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Quantum mechanics is usually formulated in terms of a single Hilbert

space and observables are defined as operators on this space. Attempts to

describe entire spacetimes and their resident matter in this way often encounter

paradoxes. For example, it has been argued that an observer falling into

a black hole may be able to witness deviations from unitary, violations of

semi-classical quantum field theory, and the like. This thesis argues that the

essential problem is the insistence on the use of a single, global Hilbert space,

because in general it may be that a physical observer cannot causally probe

all of the information described by this space due to the presence of horizons.

Instead, one could try to define unitary quantum physics directly in

terms of the information causally accessible to particular observers. This thesis

makes steps toward a systematization of this idea. Given an observer on a

timelike worldline, I construct coordinates which (in good cases) cover precisely

xi



the set of events to which she can send and then receive a signal. These

coordinates have spatial sections parametrized by her proper time, and the

metric manifestly encodes the equivalence principle in the sense that it is flat

along her worldline.

To describe the quantum theory of fields according to these observers,

I define Hilbert spaces in terms of field configurations on these spatial sec-

tions and show how to implement unitary time-evolution along proper time.

I explain how to compare the observations of a pair of observers, and how

to obtain the description according to some particular observer given some a

priori global description. In this sense, the program outlined here constructs

a manifestly unitary description of the events which the observer can causally

probe. I give a number of explicit examples of the coordinates, and show

how the quantum theory works for a uniformly accelerated observer in flat

spacetime and for an inertial (co-moving) observer in an inflating universe.
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Chapter 1

Introduction

The search for a quantum theory of gravity applicable to human obser-

vations has been ongoing for about a century. Although we have constructions

of various quantum theories including gravitational interactions in some lim-

iting circumstances, to date we lack even a precise formulation of the question

in general. That is to say, it remains unclear what exactly it would even mean

to obtain a quantum theory of gravity.

In this thesis, I will take the position that a natural and conservative

set of necessary conditions can be formulated. The most important criterion is

that the theory should be able to reproduce all currently observed gravitational

phenomena. In particular, the classical theory of spacetime and its geometric

description, if not the precise dynamics of general relativity, are valid at least

on scales between lab experiments down to around 10�3 meters (10�18 for local

Lorentz invariance in quantum field theory) and cosmological scales up to the

size of the observable universe, about 1029 meters.

The more subtle conditions require careful definition of the words quan-

tum and gravity. Ideally, one would like to build a general quantum theory

capable of predicting observable gravitational phenomena ab initio. This the-
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sis focuses on two core tenets of what we believe holds for all observed pro-

cesses: the equivalence of gravitational fields with acceleration of the reference

frame and the unitarity of quantum mechanical measurements. A simultane-

ous, general definition of these concepts without reference to other elements

of the theory, in particular to at least part of some background spacetime, is

beyond the scope of this work. Instead I will study definitions of each without

reference to the other, and explore how far one can go without encountering

contradictions.

In particular, I will argue for an interpretation of both of the principles

as stated above based on carefully considering the observations made by real,

physical observers. In this setting we can make progress because experimen-

tally known facts about both quantum and gravitational phenomena constrain

any consistent theory of these observers and their observations. Fundamen-

tally, the concepts of unitarity and frame are inseparable because any notion

of unitarity is based on the outcomes of measurements, which must be made

with respect to some reference frame. Moreover, the causal horizons of an

observer define the data for which he needs a unitary description.

Understanding physics from the point of view of an observer could have

been argued to be a purely academic exercise until the 1997 measurements

of the redshifts of distant supernovae. The results of these measurements,

confirmed by a large and growing body of further evidence, imply strongly

that we live today in a universe in which spatially separated observers cannot

probe the same parts of space even in principle.
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Put simply, the traditional framework of physics is that one is describing

some system “in a box” as if we are viewing it from the outside. But this may

no longer be adequate. Our cosmology is not a system in a box that we are

viewing from above. We are not God, and we are not a meta-observer. We live

inside the box. Indeed, our very presence is what defines the box. This may

well call for a very di↵erent formulation of physics, and gravity in particular.

The purpose of this thesis is to make steps toward a theory of this viewpoint

– a theory of observation.

1.1 Basic argument, structure, and results of this thesis

Everyone knows that we do not know how to make sense of gravity

in a quantum mechanical setting. What is perhaps less well appreciated is

that there are two very distinct issues at hand. One is ultraviolet : attempts

to “quantize” the gravitational field and treat it quantum-mechanically have

more-or-less failed. The problem is that the Newton constant is not dimen-

sionless, and one cannot renormalize the theory, unless very special couplings

to matter are considered, as in string theory.

This problem is deep: we do not know how to correctly think about

gravity at very short lengthscales. Luckily, this appears to be utterly irrelevant

to anything we are likely to measure. The reason is because one can perfectly

consistently treat gravitational perturbations as an e↵ective quantum field

theory. This treatment has been remarkably successful in the only setting

in which it is related to experiment, the theory of fluctuations in the very
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early universe. For example, a collider experiment is sensitive to the ratio

of couplings like ⇤QCD/Mpl ⇠ 10�20, while in the early universe quantum

gravitational e↵ects are sensitive to the inflationary Hubble parameter H/Mpl,

which may be as large as about 1 part in 100.

On the other hand, there is also an infrared problem. The issue is that

the unitary evolution of information near causal horizons is extremely tricky.

In particular, attempts to consider the experiences of observers infalling into

black holes have consistently led to long strings of paradoxes regarding who can

exactly see what. There is no shortage of proposed examples where it appears

that an observer or pair of observers could measure a violation of unitarity,

although these paradoxes have historically been resolved case-by-case.

While these problems are usually formulated in terms of black holes,

they are much more general: they are really statements involving observers

who experience horizons, i.e. who cannot probe all of a given spacetime. The

presence of a curvature singularity may be a red herring. More importantly,

formulating things generally in terms of observers allows us to check things

by considering accelerated observers in flat spacetime, a situation in which we

have total theoretical control over any questions below, say, the TeV scale.

The central idea of this thesis is that one should have a systematic

theory of observerations made by arbitrary physical observers. Moreover, one

would like to know how to compare the observations made by pairs or more

general collections of observers. One should be able to do this without reference

to parts of spacetime to which these obververs do not have causal access, and
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one would like the theory to be general enough to apply to any particular

dynamical system. Such a theory is what I will call a theory of observation.

A formally weaker version of this idea was first stated by ’t Hooft,

Susskind, and others, in the form of the principle of complementarity. This

principle states that the observations of an observer outside of some horizon

regarding the e↵ects of what is inside that horizon can be “complementarily”

described with some data outside the horizon.1 It is my feeling that this idea

has never really been treated systematically. One of the goals here is to provide

some technical tools in this direction. However, I stress that one of the reasons

for formulating things as I did in the previous paragraph is because it lends

itself to a fairly straightforward set of equations that one can work with.

The search for good observables in quantum gravity is an old and largely

open problem.2 The idea here is that a good place to start systematically look-

ing for such observables is by considering things that somebody can actually

observe. The dream is that the set of such observables is enough to define a

complete theory of quantum gravity.

In other words, the goal here is to try to find a quantum theory of

gravity by starting with operationally meaningful observations. It may be

that if we can figure out what a physical observer needs to be able to measure

1Inside and outside refer to the causal structure. In the language of appendix A, an
event “inside the horizon” is an event outside the lightcone of the observer O defining the
horizon, that is an event only connected to O’s worldline by spacelike curves.

2One way to say it is that typical local observerables are things like some field value
'(xµ), which rely on selecting some particular spacetime event or events, but then one
would like to have invariance under arbitrary mappings xµ 7! yµ(x).
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in order to describe gravitating systems quantum-mechanically, then we could

deduce the type of “top-down” theory needed to make predictions for these

observables.

The explicit introduction of observers into the theory has important

technical ramifications. One immediately has a time coordinate on hand,

namely, the proper time of the observer. More importantly, the equivalence

principle provides an excellent guide for looking for observables in this setting.

Because spacetime near the observer can always be viewed as nearly flat, one

can always refer to this region for describing observations, and we already

have a pretty good handle on how physics in near-flat spacetime works. This

is a model abstraction of what is really done in practice: for example, when

we measure fluctuations in the CMB, what we actually do is put a satellite

somewhere in a very small neighborhood of our worldline.

In this vein, the ultimate goal of this line of thinking is to find an opera-

tional definition of the kinematics of gravitating systems, described completely

quantum-mechanically, in terms of observations made by physical observers.

This is a very di�cult inverse problem. The first step that needs to be taken

is to understand things the other way: given some gravitational situation de-

scribed in the usual way (i.e. as some global picture independent of observers),

one wants to have a systematic way of describing the experiences of a given ob-

server. This thesis is designed to collect a number of results along these lines.

As described in the introduction, I will focus on the two core tenets of gravity

and quantum mechanics: the equivalence of gravitational fields with acceler-
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ated reference frames and the unitary time-evolution of quantum mechanical

information.

In the first chapter, I study the notion of reference frames correspond-

ing to physical observers. After a short précis on reference frames in general,

I define an observer in the crudest possible way: as a timelike worldline on a

classical spacetime. Such a worldline defines a set of lightcones, and thus a

particular region of any spacetime which can be probed by someone living on

that worldline. This definition is thus necessary and su�cient to discuss the

restrictions of causality on measurements made by a real observer living on

this worldline. I then discuss a concrete construction of a particularly conve-

nient reference frame associated to such a worldline due to Fermi and Walker.

I show that this construction manifestly encodes the equivalence principle

as a statement about accelerated frames. In particular, this construction is

guaranteed to give coordinates in a neighborhood of the worldline such that

the metric is flat along the worldline, and the time coordinate is the proper

time of the observer. I discuss the limitations of this construction, and then

systematically study a set of examples chosen to demonstrate the generality

of this approach, including various observers in flat spacetime, cosmological

spacetimes, and Anti de-Sitter spacetime.

In the second chapter, I switch focus to unitary time-evolution. I em-

phasize that the reason for believing in unitarity is based on the fact that a

given observation must have an outcome, and distinguish this from another

aspect of unitary, the time-reversability of closed quantum mechanical sys-
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tems. I review the way that unitary evolution in flat spacetime is usually

generalized to a curved background, and then make some prelimary remarks

on formulating unitarity in a way directly associated to an observer. I discuss

the comparison of observations made by a pair of observers, and as an exam-

ple I compare an inertial and uniformly accelerated observer in flat spacetime,

recoving the famous Unruh e↵ect. I then consider the problem of going from a

global, semi-classical description of some spacetime down to the observations

made by a particular observer in that spacetime. I emphasize that these prob-

lems are generally di↵erent and illustrate this by studying the the experiences

of an inertial observer in an inflating spacetime, in which the global description

necessarily contains more information than any particular observer could ever

probe.

This is all formulated in the Schrödinger picture, for a few reasons.

The first is that one can give completely concrete expressions for the time-

evolution operator U . The e↵ects of boundary conditions imposed on the

classical field configurations and the initial conditions of the quantum state are

also much easier to disentangle than in the Heisenberg picture. Furthermore,

many holographic ideas, especially the AdS/CFT correspondence, are most

clearly understood as computing wavefunctions, and I hope that having some

examples of the Schrödinger formalism can facilitate connections to this.

There are also four appendices. The first reviews the basics of causal

structure on a Lorentzian manifold, although in contrast to the usual discus-

sion, things are formulated with respect to observers. The second gives the
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quantization of free fields on the sphere and in spherical coordinates in flat

space, a topic which is used repeatedly in the main text. The third reviews

a convenient and exact solution for the time-evolution of a harmonic oscil-

lator with time-dependent mass and frequency. The final appendix studies

the spreading or “scrambling” of classical bulk information on time-dependent

cosmological horizons as a first step in applying some of the ideas in the main

text to holographic problems.

1.2 What is known experimentally

The classical gravitational dynamics of and between bodies is a very

well-tested subject. On the other hand, laboratory experiments have demon-

strated enormous agreement with the basic principles of quantum mechanics.

Moreover, by now there are even some testing grounds in which both theories

are operating simultaneously.

The purpose of this section is to briefly review some of what is currently

known experimentally and what may be accessible in the near future. The list

of topics covered here should be viewed as a selection of experimental facts

relevant to the ideas discussed in the introduction. I make no attempt to

give a comprehensive review of all experimental tests of gravity and quantum

mechanics. In particular the references are chosen subjectively, with some the

original measurements and others the most modern.

At the laboratory scale, the classic Eötvos experiment tests the equiv-

alence of gravitational mass mg and inertial mass mi (see eq. (2.2)). This is
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accomplished by fixing a horizontal rod on the bottom of a vertical wire which

is free to rotate, and then suspending two objects of slightly di↵erent inertial

masses onto the two ends of the horizontal rod. If the dimensionless parameter

⌘ =
(mg/mi)1 � (mg/mi)2

[(mg/mi)1 + (mg/mi)2] /2
(1.1)

is di↵erent from zero, then their resulting accelerations will di↵er. If the di↵er-

ence in their acceleration vectors has a component normal to the suspension

wire, a torque will be induced on this wire, and one can measure it. The

Eötvos-Wash. group at the University of Washington has the most stringent

bounds on ⌘ to date, ⌘  2⇥ 10�13, on a system consisting of two test masses

on the order of 40 grams made out of beryllium and titanium, respectively.(1)

These experiments test the equivalence principle on scales down to about the

millimeter level and at present provide the most stringent bound on the pa-

rameter ⌘. In the near future, the satellite MICROSCOPE will perform similar

measurements and is capable of bounding ⌘ at the 10�15 level.(2) For a review

of other types of tests of the equivalence principle, see for example the review

(3). In this thesis, I interpret such measurements as a verification of the no-

tion that an accelerating frame of reference is equivalent to a gravitational

field acting on objects at these scales.

At significantly longer wavelengths, what is of greatest significance to

this thesis is the fact that all observations made to date are perfectly con-

sistent with a classical, metric theory of Lorentzian spacetime. In particular,

a variety of cosmological measurements are consistent with the description
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of the large-scale structure (and thus long-term behavior) of spacetime as a

Friedmann-Robertson-Walker metric (2.55). At late times, meaning the cur-

rent cosmological era, the most important measurements are of the redshifts of

type IA supernovae at distances of about 1026 meters, first performed by the

groups of Reiss (4) and Perlmutter (5) in 1997. Because the photon emission

spectrum and luminosity of such supernovae is believed to be well-understood,

one can deduce both the distance and relative velocity of these objects, and

fit the data to Hubble’s law H0d = v. These groups were the first to find that

the farther a supernova is located from us, the faster it appears to be receding,

i.e. H0 > 0.

At very early times, measurements of the statistical anisotropies in the

temperature distribution of photons from the time of last scattering, before

which the universe was opaque to photons, have shown that the universe was

extremely homogeneous and isotropic in space starting from very early times.

The typical variable reported in these measurements is the angular power spec-

trum C` (defined in eq. (B.27)) of these anisotropies. Temperature di↵erences

on the sky at angular separation ✓ are determined by ` ⇠ 100�/✓. In terms of

this observable, the RMS temperature fluctuation is roughly(6; 7)✓
�T

T

◆
✓

⇡
r
`(`+ 1)C`

2⇡
. 10�5, (1.2)

at all angular scales above about ` ⇠ 5, below which cosmic variance restricts

us from saying more. The surface of last scattering is at a cosmic redshift

of about z ⇡ 1000, which means the photons we are measuring had their
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distribution set about 1029 meters away from us today, and I believe that this

constitutes the largest-scale test of Lorentzian spacetime.

Put together, these and a variety of other cosmic measurements have

led to a highly robust and simple model of the history of the universe, valid as

far as we know up to at least the surface of last scattering and probably earlier.

This model is known as the ⇤CDM model,3 which in detailed form contains

about seven parameters. For the purpose of this work, the model contains

an early epoch of inflation, with Hubble parameter Hinf & 1 MeV somewhat

unconstrained,4 followed by a fairly complicated set of cosmological epochs,

and with the universe today exiting back into another accelerated phase, with

H0 ⇡ 68± 1 km/sec/Mpc ⌧ Hinf . (1.3)

Interpretation of the precise measurements made requires some theoretical

imput like any measurement, and it is possible that the simplest interpretations

available today will be found untenable in the future. However, in this thesis I

will take at roughly face value the notion that the large-scale structure of the

part of spacetime visible to us began and is apparently going to end with a pair

of periods of cosmic acceleration with vastly di↵erent acceleration parameters.

On much smaller length scales, one can ask how well we know that our

3One can see the WMAP papers (7) for an excellent review of this model.
4The number 1 MeV is a lower bound from Big Bang nucleosynthesis; if Hinf is smaller

than this then one generally underpredicts the abundance of light elements. It should be
noted that while we do not have a robust handle on the actual value of Hinf , the recent
claimed measurements by the BICEP collaboration would, under reasonable assumptions,
put Hinf in the ballpark of up to 1016 MeV! (8)
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local region of spacetime is approximated by Minkowski spacetime, or more

specifically to what degree local Lorentz invariance is a good symmetry of

nature. Scattering experiments at the Large Hadron Collider, which involve

energies of about 10 TeV, corresponding to a length scale on the order of 10�18

m, and the results are consistent with a Lorentz-invariant quantum field theory

(the standard model of partice physics).(9; 10)

At the level of the foundations of quantum mechanics, an important

question related to this work is how well we know that time-evolution of quan-

tum states truly is linear. Weinberg suggested in 1989 that one could bound

possible terms of the schematic form ✏| |2 appearing potential non-linear gen-

eralizations of the Schrödinger equation.(11) Among other things, such a term

would cause the energy levels of a time-independent system to depend on the

modulus squared of the wavefunction, and hence can be bound experimentally.

The most stringent bound to date comes from measurements of precession fre-

quencies in mercury atoms, setting ✏/(2⇡~c)  10�14 m.(12)

1.3 What is known theoretically

In this section I briefly review the set of theoretical developments that

led up to this work. Again, this is not intended to be a comprehensive review

of the theory of quantum gravity but rather a subjective history of the de-

velopments most vital to the main argument given in the introduction. The

reader is referred to the very nice review given by Rovelli (13) for a more

detailed treatment of the history.
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The foundational idea of modern gravitational theory is the principle

of equivalence, as developed by Einstein in the early part of the 20th century.

Historically, Einstein wrote down the principle of local Lorentz invariance in

1905,(14) stated the general principle of equivalence as “the complete physi-

cal equivalence of a gravitational field and a corresponding acceleration of the

reference system” in 1907, (15) and finally wrote down the field equations of

general relativity in 1915.(16) As emphasized earlier, here we will mostly be

concerned with the first two developments: we will certainly be studying clas-

sical Lorentzian spacetimes equipped with reference frames and accelerating

observers, but the Einstein field equations, which are an additional piece of

theoretical structure, will not be used except to motivate the choice of various

spacetimes.

The Lorentzian theory of spacetime includes the existence of horizons

of various types, and these are central to this thesis. The formal theory is

reviewed in appendix A. The idea that spacetime may contain regions “from

which light could not escape” goes back way before relativity and is usually

attributed to Laplace in 1796; Hawking and Ellis (17) give a translation of his

paper. Fast-forwarding a bit, the Schwarzschild spacetime, discovered in 1916,

contains the first historical example of a general relativistic event horizon.(18)

This solution describes the gravitational field of some spherically symmetric

mass M at r = 0 and contains a radius r = rS with the property that any

observer at any fixed radial position r > rS cannot receive signals sent from

r < rS.
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The first cosmological horizon was found by de Sitter in his 1917 papers.(19)

The de Sitter horizon di↵ers from the Schwarzschild case in that this horizon

is not sourced by any localized mass but rather by a spatially homogeneous

energy density ⇤. One sometimes hears that the Schwarzschild horizon is

“observer-independent” while the cosmological horizon is not; this is incorrect

inasmuch as the observer’s trajectory in either case certainly a↵ects the exis-

tence and location of the horizon. The first horizon shown to exist only due

to the motion of the observer, in particular due to uniform acceleration in flat

spacetime, was first clearly explained by Rindler in 1966 (20), although its

presence was noted earlier by Einstein and Rosen in 1935 (21) and Bergmann

in 1964. (22)

That the observable part of the universe in which we live is contained

within an event horizon is an extrapolation from experimental facts that have

never been convincingly explained. The standard ⇤CDM model of cosmology

implies that we have a horizon much like de Sitter’s, because it contains a cos-

mological constant ⇤ > 0 corresponding to an energy density of about 10�29

g/cm3. The closest thing to a convincing prediction of this value was Wein-

berg’s (23) anthropic argument in 1987, but to date there has not been any

plausible argument for the observed value that does not invoke some particu-

lar conditions for the formation of physical observers who are able to measure

the value of ⇤, not to mention a distribution of possible values or physical

mechanism for probing this distribution, both assumed to exist in Weinberg’s

treatment (see for example (24; 25)).
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Ultraviolet problems involving quantum treatments of gravitation arose

as early as Einstein’s 1916 comments that quantum e↵ects would probably in-

volve modifications of general relativity.(26) The earliest attempts to treat

linearized gravitational perturbations as a quantum field theory are due to

Rosenfeld in 1930 (27) and the lesser-known M. P. Bronstein in 1936.(28) Al-

ready in 1938, Heisenberg anticipated the fact that the Newton constant is

dimensionful as likely to pose a problem for quantum theories of the gravita-

tional field.(29) This was confirmed by ‘t Hooft and Veltman and separately

by Deser and van Nieuwenhuizen, whose calculations in 1974 showed explicitly

that gravity coupled to matter, treated perturbatively around a flat spacetime,

is non-renormalizable.(30; 31; 32)

Conflicts between quantum mechanics and gravity at long wavelengths,

on the other hand, did not begin to appear until much later. Bekenstein was

the first to suggest that black holes hid information in a surprising fashion: he

conjectured that the entropy inside the black hole was not an extensive quan-

tity scaling with its volume but rather one scaling with its area.(33) Hawking

then ignited the problem in 1974.(34) He considered the behavior of a scalar

field in the presence of a Schwarzschild black hole, and showed that given a

natural choice of state for the field, it would appear to an observer outside

the black hole that quanta of the field were being radiated with a thermal

spectrum; Gibbons and Hawking generalized this to the de Sitter horizon in

1977.(35) The black hole result led Hawking to suggest that black holes can
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evaporate by radiating away their mass.5 The no hair theorems of classical

general relativity (see eg. (36; 37; 38; 39)) state that black holes can be com-

pletely described by a few parameters, and the same is true for a blackbody

spectrum. These results led Hawking to suggest in 1976 that information

might be “lost” in black holes: the detailed information of the collapsing mat-

ter is eventually converted into nothing but a temperature, and he proposed

a non-unitary time evolution that carried an initial pure state into a density

matrix.(40)

These problems led people to begin seriously considering the global

structure of the quantum theory of gravity. Already in 1980, Page considered

black hole formation and evaporation as a scattering process and argued that

it should be unitary.(41) ‘t Hooft considered the S-matrix of string theory in

asymptotically flat spacetimes and used it to argue that unitarity required the

presence of intermediate black hole states in scattering amplitudes.(42; 43)

Susskind, Thorlacius and Uglum (44) began to formulate the idea of comple-

mentarity in 1993: they argued that information inside the horizon should

have some complementary description in terms of exterior degrees of freedom,

at least according to an observer asymptotically far from the black hole.

These ideas, building on other developments in string theory, soon de-

veloped into the idea of holography, in which the physics of some d-dimensional

world could be encoded in a description in terms of a di↵erent number of di-

5It should be noted that there is no analogue in the cosmological case: the radiation has
nowhere to go.
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mensions, often d � 1.(45; 46) This idea began to be made precise in asymp-

totically flat spacetime by Banks, Fischler, Shenker and Susskind in 1996 (47)

and then in the context of asymptotically Anti-de Sitter spacetime by Mal-

dacena in 1997.(48) In AdS/CFT, the gravitational system in d dimensions

has an equivalent dual description in terms of a conformal field theory in flat

spacetime in d � 1 dimensions. Since the dual is manifestly unitary, the gen-

eral consensus for some time has been that this implies that the corresponding

gravitational theory is likewise unitary. In this context it is still unclear “who”

has a unitary description here: that is to say that the unitary CFT description

is dual to the global gravitational picture, not necessarily that of a particular

observer.

Focusing on observations of particular observers is in some ways a

very old topic. Indeed, the study of quantum mechanics as viewed by in-

ertial observers in flat spacetime, i.e. symmetrically in the Poincaré group,

led to quantum field theory. In order to give an operational treatment of

Hawking’s black hole calculations, Unruh demonstrated with a precise con-

struction that a simple detector capable of measuring energy absorbtion and

emission would also see a thermal spectrum if it was uniformly accelerated

through flat spacetime.(49) Holographic considerations of observers in de Sit-

ter spacetime led Fischler and Banks to propose that the finite entropy of that

space allowed for a quantum-mechanical description with a finite-dimensional

Hilbert space.(50; 51) In black hole physics, Preskill and Hayden considered

the quantum-mechanical consistency of a pair of observers falling into a black
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hole at di↵erent times,(52) and more recentlly similar kinds of observer pairs

have led to paradoxes like the “firewall” problem of Almheiri, Marolf, Polchin-

ski and Sully.(53)

One can argue that the major di�culty in these types of problems

centers around the attempt to find a global description of the quantum theory,

even though no particular observer can probe the entire description. This

issue, and more generally the search for a consistent quantum description

of cosmology, is a central theme in the “Holographic Space-Time” approach

advocated by Banks and Fischler.(54; 55; 56; 57; 58) This work has had a very

direct influence on this thesis, and one could consistently view large pieces of

what follows as my own attempt to give a precise formulation of some of their

ideas.
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Chapter 2

Observers

Einstein’s general theory of relativity is built on the principle of equiv-

alence. This is often colloquially explained as the equivalence of the inertial

and gravitational mass of an object. The simplest illustration of this idea, and

the one originally used by Einstein himself, was to consider the Newtonian

equation of motion of a massive particle freely falling in a gravitational field,

mia = mgg. (2.1)

The mass on the left-hand side is the “inertial” mass of the object: its resis-

tance to changes in its momentum given an applied force. On the right side,

the mg represents the gravitational mass of the object: its coupling to the

gravitational field g. According to the equivalence principle, these coe�cients

are identical, mi = mg, and can be canceled from the equation, yielding

a = g. (2.2)

This behavior is very di↵erent from the other known forces in nature, for

example the electromagnetic field, which gives the equation of motion

mia = q(E+ v ⇥B) (2.3)
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for a particle of mass mi and electric charge q.

The result (2.2) can be interpreted in many ways, and its overall scope

must be examined carefully. It is fair to say that the majority of research

in gravitation after Einstein has focused on a field-theoretic intepretation, the

statement being that gravitational interactions are described by a gravitational

field which couples identically to all forms of local energy.1 In this thesis, I

will instead focus on interpreting (2.2) very literally, following Einstein’s own

remarks (before the publication of the general theory!): we will explore the

“complete equivalence of the e↵ects of a gravitational field and a corresponding

acceleration of the reference frame”.(15)

I will argue that a large number of phenomena conventionally attributed

to gravitational fields, in particular causal horizons therein, can be understood

very clearly in terms of accelerating reference frames. We will see that when

one focuses on physical observerations in this sense, a number of known semi-

classical phenomena, for example Hawking radiation, are manifestly infrared

e↵ects: they necessarily occur in tandem with the presence of a causal horizon,

but need have no a priori connection to any curvature singularites which may

have been sourcing those horizons.

In this chapter, we will formulate a general theory of probe, timelike

observers in classical Lorentzian spacetimes. These observers can be experienc-

ing arbitrary acceleration, either due to external forces (including gravitational

1This formulation is sometimes called the “strong equivalence principle”. See Weinberg’s
textbook (59) for an excellent discussion.
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fields) and/or due to the firing of their rockets. By probe we mean that we

neglect the e↵ect of their energy on the gravitational field. We will first give

a precise notion of a reference frame associated to an observer O and use this

to assign coordinates xâ to a neighborhood of her worldline. We then turn to

a particularly simple and useful choice of frame, using a construction due to

Fermi and Walker.(60; 61) I show that the Fermi-Walker frame of a uniformly

accelerated observer in flat spacetime is identical to that of an observer using

her rockets to hover at fixed distance from a massive body. This is followed

by a study of the frames of a small pantheon of example observers, and sum-

marized by a few comments on possible generalizations of this construction.

Besides the original papers of Fermi and Walker,(60; 61) one can see

Misner, Thorne and Wheeler’s textbook (62) for a brief but excellent discus-

sion of the general construction, and Eric Poisson’s notes on charged particles

in general relativity (63) for a more extensive review. I learned of these co-

ordinates while studying cosmological scrambling on horizons (64) (see also

appendix D), during the course of which a number of papers (65; 66; 67) by

Collas, Klein, and Randles were extremely helpful, and some of their results

are used directly in this chapter, especially the section on FRW metrics.

2.1 Observers, the equivalence principle, and Fermi-
Walker coordinates

Such statements behoove us to provide a good definition of the terms,

especially the notion of a reference frame. In a typical metric theory of gravity,
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one models spacetime as a Lorentzian manifold (M, g) where the metric g

contains all of the information about gravitational interactions. In order to

describe measurements, we introduce a system of local coordinates xµ on M ,

with respect to which we can express tensorial quantities in components along

the coordinate derivatives, say g = gµ⌫dxµdx⌫ . This constitutes a frame of

reference associated directly with the coordinates, often called the coordinate

frame. More generally, one could imagine at each spacetime event a set of

vectors used to define local axes, say eâ = eµâ@µ where the index â = t̂, x̂, . . .

is used to keep track of this set of vectors. One of these must be timelike, so

we label it with t̂. Given such a set of vectors everywhere, one can construct

coordinates along their integral curves. For example, the coordinate frame is

just eµâ = �µâ .

This notion of reference frame is very general. In particular, it is not

tied to the presence or influence of any measuring device or other physical

object in the model. One simply has a spacetime and one assumes the existence

of such an idealized apparatus for measuring distances and times. Einstein

originally conceived of this as a system of rods and clocks. Nowadays one

might ask if a better formulation is required given the advent of quantum

mechanics and its limitations on measurements of precisely these types of

quantities. The answer is almost certainly yes, but we will not attack that

problem in full in this work.

Here, we focus on an even more elementary aspect of measurement in

the presence of gravitation: physical objects do not in general have causal
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access to the full extent of a given spacetime. This is because these objects

are described by timelike worldlines. There may be events which are not

connected to this worldline by any null geodesic. In particular, any kind of

measurement device, life form, or even a particle may in general only be able

to send signals to and/or receive signals from a proper subset of a spacetime,

and has in principle no way to check the predictions of any theory outside

this region.2 The most he can do is check for boundary conditions near her

horizon. In this thesis, we will simply refer to these devices or apparatuses as

“observers”, and we will search for a consistent theory which encapsulates this

constraint.

In this thesis we will model the observer O simply as a timelike worldline

O = O(⌧) parametrized by proper time ⌧ along the worldline. This data is

necessary and su�cient to capture the classical causal structure as seen by a

realistic observer. We will take this path as given ab initio, say as a set of

explicit coordinate functions Oµ(⌧). In other words, we assume the observer is

capable of using rockets or some other force to propagate along this worldline.

For simplicity and concreteness, we will take the “probe limit” in which the

observer does not source either the metric or other fields. In particular, the

details of how the observer actually does the measurement do not have any

e↵ect on the geometry. I believe that in an ultimate theory of observation,

such e↵ects will probably be very crucial, but studying them is largely beyond

the scope of this work.

2Unless he can talk to another observer on a di↵erent worldline.
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Now, our observers as just defined can be propagating through an ar-

bitrary spacetime (M, g) and we have given them the freedom to move as they

will, subject only to the constraint that they cannot locally propagate at or

faster than the speed of light. How should we assign a frame of reference to

such an observer? The principle of equivalence is often invoked in the form

that “any spacetime is locally flat spacetime”. This can be stated precisely by

saying that at any point xµ one can erect a coordinate system such that the

metric gµ⌫ = ⌘µ⌫ +O(R�x2) near xµ, where R is the value of the Ricci scalar

at xµ and here and after we use ⌘µ⌫ = (�,+,+, . . .) to denote the usual flat

metric. This defines a set of “locally inertial reference frames” which form the

ultimate basis for measurement in gravitational theory.

However, our typical observer would probably not use such a coordinate

system to describe measurements. In particular, since he sweeps out an entire

worldline of events, he would have to construct such coordinates an infinite

number of times. A more practical observer O would take with her a set of

vectors eµâ = eµâ(⌧) which he could carry along her worldline O(⌧) and use

to make measurements.3 To make measurements o↵ her worldline, he could

extend these vectors into vector fields defined in some neighborhood of her

worldline and use these fields to define coordinates. A simple choice would

be to transport the eµâ(⌧) along geodesics emanating from her worldline. This

is what we will do in this thesis, but it should be emphasized that this is a

3We will sometimes refer to such a collection of vectors eµâ as a veilbein, and also as a
“tetrad” in the case dimM = 4.
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choice.

In what follows, we assume some general facts and use them to give a

precise definition of such frame coordinates. Let p denote a spacetime event

in M . For a given set of frame vectors eµâ(⌧) and for p su�ciently close to O,

there exists a unique spacelike geodesic, frame time ⌧ and spacelike vector nµ

normal to O such that the geodesic � emanating from O(⌧) with velocity nµ

reaches p. Let the geodesic distance at this point be ⇢, so that �(⇢) = p. Then

we denote the frame coordinates of p by xâ := (⌧, ⇢nî). Here the spatial frame

directions are labeled by î = x̂, ŷ, . . . = 1̂, 2̂, . . . and the frame components of

a vector are defined by vµ = eµâv
â.

We will also sometimes use spherical frame coordinates. In a d-dimensional

spacetime, these coordinates (⌧, ⇢, ✓,�1, . . . ,�d�2) are obtained by parametriz-

ing the frame components of the normal vectors by angles, say4

n1̂ = cos ✓

n2̂ = sin ✓ cos�1

n3̂ = sin ✓ sin�1 cos�2

...

n
ˆd�2 = sin ✓ sin�1 · · · sin�d�3 cos�d�2

n
ˆd�1 = sin ✓ sin�1 · · · sin�d�3 sin�d�2.

(2.4)

Here the polar angle ✓ runs from 0 to ⇡ and the azimuthal angles run from 0

4With apologies, this puts what is usually called the ẑ axis along n1̂, but this way of
parametrizing the spheres will be consistent and simple for all observers.
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to 2⇡. The map between these coordinates is simply (⌧, xî) = (⌧, ⇢nî).

This construction does not uniquely fix a set of coordinates even locally,

because we have total freedom to choose the frame vectors we carry in order to

perform measurements. The presence of the observer has certainly explicitly

broken local translational invariance. We can however still consider frames

that are locally Lorentzian and orthonormal,

eâ · eb̂ = gµ⌫e
µ
âe
⌫
b̂
= ⌘âb̂. (2.5)

The set of all such bases can be generated by the group SO(1, 3). In other

words, we have explicitly broken general covariance down to local Lorentz

rotations.

An enterprising observer could exploit this freedom to construct nice

coordinates suited to her purpose. In this work we will make heavy use of

a program initiated by Fermi and Walker. The observer may be undergoing

arbitrary accelerations, due either to external forces or her own rockets. If he

has accurate knowledge of her surroundings and has charted her path ahead of

time, say in some local coordinates xµ, he could use this knowledge to engineer

her frame to take into account its rotations and accelerations under parallel

transport. Define the two-form ⌦µ⌫ = ⌦µ⌫(⌧) along her worldline O(⌧) by

⌦µ⌫ = aµv⌫ � a⌫vµ (2.6)

with v = dO/d⌧ her velocity and a = rvv her proper acceleration. We say

that a frame basis eµâ(⌧) is Fermi-Walker transported with the observer if it
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satisfies

rve
µ
â + ⌦µ

⌫e
⌫
â = 0. (2.7)

We are still free to choose the initial frame basis eµâ(⌧0) at an arbitrary reference

time ⌧0. In particular we will always take eµ
t̂
= vµ to define the timelike axis of

her frame; this condition and the orthonormality condition (2.5) are preserved

by (2.7). We call the frame coordinates with respect to this frame the Fermi-

Walker coordinates or simply the frame coordinates of the observer O. In

particular, the timelike frame coordinate t̂ is simply the proper time along the

worldline t̂ = ⌧ .

So far we have only made local statements. More generally, we would

like any kind of “frame coordinates” to cover only the part ofM accessible to O;

one could define, for example, future/past/diamond frame coordinates which

cover the future/past lightcone interiors or causal diamond of O.5 It will be

convenient to package this requirement in with our definition of a frame. Thus,

to summarize things formally, a frame of reference for an observer will mean

in general a worldline O for the observer, a set of frame vector fields eâ, and

the associated coordinates, restricted to the appropriate choice of lightcone.

In the rest of this work we will only use the Fermi-Walker frame, and

simply refer to it as “the observer frame” for brevity. It should be kept in

mind that this is a choice and one may want to be more flexible. In particular,

the FW frame coordinates do not generally cover the entire region causally

5See appendix A for the definitions of these terms.
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accessible to an observer, although they often do. Indeed, they cover the

entire causal diamond of every observer studied in this thesis except for the

non-uniformly accelerated observers of section 2.4.

Klein and Collas have developed a general coordinate transformation

between the ambient coordinates xµ and the Fermi-Walker coordinates xâ,

expressed as Taylor series expanded around the observer’s worldline O(⌧).(65)

In particular, the Klein-Collas map xµ(xâ) to second order is given by

xµ(⌧, xî) = Oµ(⌧) + eµ
î
(⌧)xî � 1

2
�µ
↵�(O(⌧))e

↵
î
(⌧)e�

ĵ
(⌧)xîxĵ + O(|x|3). (2.8)

Here Oµ(⌧) are the ambient coordinates of the observer at ⌧ , and we have

written the ⌧ -dependence of the frame basis to remind us that these quantities

are evaluated on O(⌧). Using this map, one can verify directly that the metric

in the frame is given by, to second order,

ds2 = g⌧⌧d⌧
2 + 2g⌧ îd⌧dx

î + gîĵx
îxĵ (2.9)

where the metric coe�cients are given purely in terms of data along the ob-

server’s worldline

g⌧⌧ (x
â) = �

h
1 + 2aî(⌧)x

î + (aî(⌧)x
î)2 +R⌧ î⌧ ĵ(O(⌧))x

îxĵ
i
,

g⌧ î(x
â) = �2

3
R⌧ ĵîk̂(O(⌧))x

ĵxk̂,

gîĵ(x
â) = �îĵ �

1

3
Rk̂î ˆ̀̂j(O(⌧))x

k̂x
ˆ̀
.

(2.10)

These formulas form the core of the gravitational side of this thesis. As

a technical tool, these coordinates are very powerful. Their most significant
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use is to alleviate a common problem in gravitational physics, which is that

a given spacetime may or may not have some kind of “preferred” temporal

coordinate. The frame coordinates simply introduce one by fiat: the proper

time as measured by the observer. Frame coordinates also make absolutely

manifest the fact that we are measuring things with respect to a physical

observer. In my opinion, this construction is not in any way against the

spirit of general relativity: although the observer picks out a reference frame,

spacetime itself still has in general no preferred observer or preferred frame.6

Any given observer can do measurements with her apparatus, and we will

develop the technology he needs to relate those observations to those made by

other observers.

6Conversely, if a spacetime does have some kind of special time coordinate, say that along
a timelike Killing vector field, one can regard the observer propagating down that field as
“special” in exactly the same way. The most obvious and important example is any inertial
observer in flat spacetime.
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2.2 Uniformly accelerated observer in flat spacetime

i+

i�

i0

J+[O]

J�[O]

OO

Figure 2.1: Penrose diagram of an inertial ob-
server O and a uniformly accelerated observer
O in Minkowski spacetime.

The most important non-trivial example of an observer frame is that of

an observer in flat spacetime undergoing constant proper acceleration. In this

section I will apply the formalism described in section 2.1 to such an observer

and we will see that the resulting observer frame is simply Rindler spacetime.

Consider flat Minkowski spacetime M in the usual Cartesian coordi-

nates xµ = (t, x, y, z). For concreteness and to keep the discussion consistent

with later sections, let O denote an inertial observer fixed at the spatial origin.

This observer has trivial causal structure and her causal diamond covers the

full spacetime. Her frame coordinates coincide with the ambient ones xâ = xµ.

Now consider an observer O = O(⌧) constantly accelerated in one di-

rection, say along the x-axis, with magnitude A. Let ⌧ denote her proper time.
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If we set her clock to ⌧ = 0 at (t, x, y, z) = (0, A�1, y0, z0) then her worldline

is famously given by, in Cartesian coordinates,

Oµ(⌧) =

0BB@
A�1 sinhA⌧
A�1 coshA⌧

y0
z0

1CCA . (2.11)

This formula is derived on general grounds in section 2.4.

Let us work out the reference frame of this observer O. The answer is

well-known to be Rindler spacetime. her velocity and proper acceleration are

vµ(⌧) =
dOµ

d⌧
=

0BB@
coshA⌧
sinhA⌧

0
0

1CCA , aµ(⌧) =

0BB@
A sinhA⌧
A coshA⌧

0
0

1CCA . (2.12)

Clearly we have a2 = ⌘µ⌫aµa⌫ = A2 so indeed this fellow is experiencing

uniform proper acceleration. The Fermi-Walker tensor along O is given by

(2.6), which has only two non-vanishing components

⌦tx = �⌦xt = A. (2.13)

It is simple to solve the Fermi-Walker transport conditions (2.7). Start by

setting the timelike vector e⌧ = v. This vector is on the t � x plane, so the

easiest way to get an orthogonal vector is to put

ex̂ =

0BB@
sinhA⌧
coshA⌧

0
0

1CCA . (2.14)

To fill out the tetrad, note that ⌦ only has t, x components, so the Fermi-

Walker condition is just parallel transport on the y � z plane; thus we take
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eŷ = @y and eẑ = @z. All said, we have the veilbein

eµâ(⌧) =

0BB@
coshA⌧ sinhA⌧ 0 0
sinhA⌧ coshA⌧ 0 0

0 0 1 0
0 0 0 1

1CCA . (2.15)

It is straightforward to verify that this solves (2.7) and the orthonormality

conditions eâ · eb̂ = ⌘âb̂.
7

The frame coordinates for O are defined following the general discussion

in section 2.1. Fix an event p. Consider all spacelike geodesics going through

p. There will be precisely one such geodesic whose tangent is orthogonal to

O.8 Let ⌧ be the time when this geodesic crosses O, nâ the components in the

frame basis of the geodesic’s tangent vector there, and ⇢ the proper distance

from O(⌧) to p along this geodesic. Then we give p the frame coordinates

(⌧, xî) := (⌧, ⇢nî).

Since we are in flat spacetime, one can exactly and easily work out the

frame coordinates directly from the definition. Fix any event p. If p is in the

causal diamond of O, then the spacelike geodesic � orthogonal to O(⌧) and

running through p is obviously the unique line given by

�µ(⇢) = Oµ(⌧) + xîeµ
î
(⌧) =

0BB@
A�1 (1 + Ax̂) sinhA⌧
A�1 (1 + Ax̂) coshA⌧

ŷ
ẑ

1CCA =

0BB@
t
x
y
z

1CCA . (2.16)

7I will always use raised indices for the rows and lowered indices for the columns of
matrices, except when I forget.

8In general p needs to be su�ciently close to O for this geodesic to be unique, but this is
unecessary in flat spacetime. Here, the condition is just that p is in the causal diamond of
O, which for a uniformly accelerated observer with A > 0 means the right Rindler wedge,
the region x > 0.
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The last equation gives the coordinate transform between the ambient xµ and

frame xâ coordinates. We could also have obtained this result with the Klein-

Collas formula (2.8); because the Christo↵el symbols all vanish, this formula

is exact at first order. The Jacobian of this coordinate transformation, which

we will make heavy use of, is simply

⇤µ
â(⌧, x

î) =
@xµ

@xâ
=

0BB@
(1 + Ax̂) coshA⌧ sinhA⌧ 0 0
(1 + Ax̂) sinhA⌧ coshA⌧ 0 0

0 0 1 0
0 0 0 1

1CCA . (2.17)

One can find the metric by direct transformation of ds2 = �dt2+dx2+

dy2 + dz2 under (2.16). The result matches the general answer (2.9) and it is

instructive to calculate it using the latter. Equation (2.9) is exact in this case

because of the vanishing of the Riemann tensor. In this frame we know that

the metric is determined solely by the acceleration of O. Projecting (2.12)

onto the frame, we have

ax̂ = A, a⌧ = aŷ = aẑ = 0, (2.18)

all along O. Thus we see that the metric of this observer’s frame is indeed

given by the usual Rindler metric: from (2.9) we get immediately

ds2 = � (1 + Ax̂)2 d⌧ 2 + dx̂2 + dŷ2 + dẑ2. (2.19)

To get the “textbook” form of Rindler coordinates, shift the spatial coordi-

nate x̂ 7! x̂ � 1/A. For consistency in what follows we will stick with the

normalization (2.19). One verifies easily that gâb̂ = ⇤µ
â⇤

⌫
b̂
⌘µ⌫ .
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Let us also work out the causal structure of this observer. Although

we could do this easily in the ambient xµ coordinates, basically by inspecting

figure 2.2, it is instructive to study things directly in the frame. Any null curve

satisfies ds2 = 0, so a null curve on the ⌧� x̂ plane passing through some point

(⌧0, x̂0) can be parametrized as

ds2 = 0 =) ±⌧ (⌧ � ⌧0) = ±x̂

Z x̂(⌧)

x̂0

dx̂0

1 + Ax̂0 . (2.20)

It is easy to show that this is in fact a null geodesic. The sign choices label

the temporal and spatial orientation of the geodesic. Focusing on the future-

directed geodesics we can solve this to find the curves

x̂(⌧) = A�1
⇥
(1 + Ax̂0) e

±A(⌧�⌧0) � 1
⇤

(2.21)

where now ± = ±x̂ labels the spatial direction of the geodesic. From (2.21)

one can easily see that any null geodesic that passes through one point (⌧0, x̂0)

in the frame will remain in the frame for all frame time. Left-moving geodesics

will all tend toward x̂ ! �A�1 at late times, while right-moving geodesics all

appear to have come from just inside x̂ ! �A�1 at early times. One thus

concludes that x̂ = �A�1 is the event horizon of O, and by time reversing this

argument it is also her particle horizon. Formally one can write

x̂H = �A�1. (2.22)

Finally, is is also a useful exercise to briefly consider the Rindler ob-

server in spherical frame coordinates. Transforming from her usual frame
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coordinates with the map (2.4), we have the metric

ds2 = �(1 + A⇢ cos ✓)2d⌧ 2 + d⇢2 + ⇢2d⌦2. (2.23)

Again the spatial origin ⇢ = 0 is along the observer’s worldline. The angle

✓ is a polar angle with the north pole along her boost axis; the metric is �-

independent because we still have azimuthal symmetry about this axis. This

observer’s horizon is still described by the condition (2.22), which now reads

A⇢ cos ✓ = �1. (2.24)

This means that for some given radius ⇢, if we solve this for ✓ = ✓⇤(⇢), only the

part of the sphere of radius ⇢ with ✓ < ✓⇤(⇢) is within the observer’s view. In

particular, for A⇢  1, the observer can see the full sphere at ⇢; as ⇢ increases

he can see less of the sphere, and in the limit ⇢! 1 he can see precisely the

region with ✓ < ⇡/2, the northern hemisphere. This is simply the half of the

sphere at infinity of flat spacetime which is bisected by the Rindler horizon

(2.22).
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Figure 2.2: Frame coordinates for a uniformly accelerated observer in flat
spacetime, with unit acceleration A = 1. The notation here is followed
throughout: the fiducial, inertial observer O is the thick black line, the ac-
celerated observer O is the thick blue line, and her horizons are denoted by
thick purple lines. The black dashed lines are the coordinate grid of O, i.e.
the standard Cartesian coordinates in Minkowski space, while the blue lines
are the coordinate grid of O, i.e. Rindler coordinates.
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2.3 Observer hovering near a Schwarzschild or de Sitter
horizon

O

Figure 2.3: Penrose diagram of an observer O hovering near the horizon of an
eternal Schwarzschild black hole. Here we have drawn the global, maximally
extended solution.

In the previous section, we saw that the frame of a uniformly accelerated

observer in flat spacetime is simply Rindler spacetime. Note that in order

to keep her acceleration uniform he must be firing her rockets or somehow

propeling herself.

Now we will consider an observer hovering at fixed distance above a

Schwarzschild horizon (or within a de Sitter horizon). These observers also

need to keep their rockets firing so that they do not fall toward the horizon:

in order to maintain a proper distance ✏ one needs a proper acceleration a ⇠

✏�1. We will see that these observers have frames identical9 to the uniformly

accelerated observer in flat space, a very nice manifestation of the equivalence

9Up to corrections of order R✏2 with R the curvature near the horizon.
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principle.

The black hole case is easier to picture, so we start there. Consider the

Schwarzschild metric in the standard coordinates,

ds2 = �f(r)dt2 + f�1(r)dr2 + r2d⌦2, f(r) = 1� rH
r

(2.25)

where the radius of the horizon is rH = 2M/M2
pl in ~ = c = kB = 1 units. We

will only work with this metric outside the horizon, i.e. for r > rH . These

coordinates cover the right diamond of the Penrose diagram.10

Now let us consider an observer O who is using her rockets to hover

a fixed proper radial distance ✏ above the horizon. We can work out her

worldline as follows. Because the metric is static, her radial coordinate must

be a constant rO determined by

✏ =

Z rO

rH

dr0
p

grr(r0) =) rO = rH

✓
1 +

✏2

4r2H

◆
. (2.26)

We will take the observer to stay on some fixed angles ✓O,�O. Thus her world-

line is given by

Oµ(⌧) =

0BB@
⌧/
p
f(rO)
rO
✓O
�O

1CCA . (2.27)

Here the factor 1/
p

f(rO) was chosen so that ⌧ is the proper time of O, that

is �1 = gµ⌫vµv⌫ . Note that since f(rO) ⇠ ✏2/r2H for small ✏, we have recovered

10It would be interesting to formulate the outside region as the frame of an observer O
located infinitely far away from the black hole, but we will not pursue this here.
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the famous fact that clocks arbitrarily near a black hole horizon run arbitrarily

slowly as measured from far away.

Our observer has proper velocity and acceleration

v =

0BB@
1/
p

f(rO)
0
0
0

1CCA , a =

0BB@
0

f 0(rO)/2
0
0

1CCA , (2.28)

where prime means r-derivative. One finds easily that the magnitude of the

acceleration is divergent as the observer gets near the horizon

a2 ⇠ 1

✏2
. (2.29)

In other words, the observer requires a very large acceleration in order to hover

close to the horizon.

We need to equip the observer with a frame. As always we assign the

timelike basis vector e⌧ = v. Since the combined presence of the black hole

and observer have broken spatial rotation invariance, it is most convenient to

work with a Cartesian frame basis which we can again label by x̂, ŷ, ẑ. Let us

take the x̂ direction along O’s acceleration, i.e. along the radial Schwarzschild

coordinate. Orthonormality requires that we take

eµx̂ =

0BB@
0p
f(rO)
0
0

1CCA . (2.30)

The Fermi-Walker tensor has only two non-vanishing components,

⌦tr = �⌦rt =
f 0(rO)

2
p

f(rO)
. (2.31)

40



Thus along the ✓�� directions, Fermi-Walker transport is just parallel trans-

port, and we can solve it by taking constant vectors

eµŷ =

0BB@
0
0

1/rO
0

1CCA , eµẑ =

0BB@
0
0
0

1/rO sin ✓O

1CCA . (2.32)

As usual we chose the constants so that the veilbein is orthonormal gµ⌫e
µ
âe
⌫
b̂
=

⌘âb̂ along the worldline O(⌧). One can verify easily that this veilbein solves

the transport condition (2.7).

With the veilbein in hand, we work out the metric of the observer’s

frame. From here out we will assume that the observer is near the horizon

✏/rH ⌧ 1. Note that this is equivalent to taking a very massive black hole.

We will also assume for consistency that the frame spatial distances x̂, ŷ, ẑ are

of the same order as ✏. In this limit it is physically obvious that the observer

cannot probe the spacetime curvature, so her frame is really determined by

her acceleration; more precisely the curvature corrections in (2.9) are clearly

neglible. Using (2.9) and (2.29) we thus immediately obtain the frame metric

ds2 = �
✓
1 +

x̂

✏

◆2

d⌧ 2 + dx̂2 + dŷ2 + dẑ2. (2.33)

This is, as advertised, simply the frame of a uniformly accelerated observer in

flat space (2.19), with proper acceleration A = ✏�1.

This result is a very beautiful manifestation of the equivalence princi-

ple. Everybody learns in grade school that an inertial (free-falling) observer

will simply pass through the black hole horizon without noticing anything,
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at least classically, as a direct consequence of equivalence. Here we are see-

ing a complimentary e↵ect: an observer who can tell that he is experiencing

constant proper acceleration cannot deduce from this fact alone whether he

is hovering above a mass or simply accelerating through flat spacetime. Said

another way, the gravitational field acts on the observer in a manner precisely

equivalent to an acceleration of her reference frame.

Identical conclusions hold for de Sitter space. We will discuss the part

of de Sitter space relevant for real life in section 2.5. For our purpose here, we

will work with just the static patch

ds2 = �f(r)d⌧ 2 + f�1(r)dr2 + r2d⌦2, f(r) = 1�H2r2. (2.34)

Here H is the Hubble constant and we are going to consider 0  r  H�1.

These coordinates cover precisely the causal diamond of an inertial observer

O located at r = 0. This observer has a horizon at coordinate r = H�1, which

is a fixed proper distance rprop = ⇡/2H from her worldline. The coordinates

cover the right triangle of the Penrose diagram. This observer is in many ways

analogous to the “observer at infinity” in the Schwarzschild case.

Let us consider a near-horizon observer O in analogy with what we did

for the Schwarzschild case. We will take her to sit at some small fixed proper

radial distance rO < H�1 within the horizon. This means her radial coordinate

is

✏ =

Z H�1

rO

dr0
p

grr(r0) =) rO = H�1 cosH✏ ⇡ H�1

✓
1� H2✏2

2

◆
, (2.35)
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O O

Figure 2.4: Penrose diagram of global de Sitter spacetime. We have drawn an
inertial (i.e. co-moving) observer O and another observer O staying at fixed
proper radius from the event horizon of O.

where the approximation is good for H✏ ⌧ 1. Again keeping her at a fixed

position on the celestial sphere, her worldline is

O(⌧) =

0BB@
⌧/
p

f(rO)
rO
✓O
�O

1CCA . (2.36)

Essentially all of the conclusions from the Schwarzschild case now carry

over directly. In particular, one finds that this observer is accelerating with

constant magnitude along �@r, with magnitude a2 = A2 = ✏�2. One can write

out her frame explicitly and again, assuming he is close enough to the horizon

or the horizon is large enough, that is H✏⌧ 1, her frame is again Rindler

ds2 = (1 + Ax̂)2 d⌧ 2 + dx̂2 + dŷ2 + dẑ2 (2.37)

where now the x̂-axis is pointing antiparallel to the static radial r-axis. Iden-

tical conclusions as in the Schwarzschild case then follow.
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The interpretation is still that our friend O out at the horizon is doing

measurements in a highly accelerated frame. The signals he is sending to us

are redshifted by 1/f(rO) � 1, just like in the Schwarzschild case. Indeed this

is always the case near any static horizon. In the cosmological case, we, that is

to say O, define the cosmological horizon to which we could send our friend O.

Contrary to the black hole case, in de Sitter spacetime we would only a finite

distance away from our friend. In either case, we see that measurements near a

horizon appear to be very kinematically di↵erent than our local observations.
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2.4 Non-uniformly accelerated observers in flat space-
time

O11

O01

O10

O00O

Figure 2.5: Penrose diagram of an inertial
observer O and the four horsemen of flat
space, some non-uniformly accelerated ob-
servers O00,O01,O10,O11 in Minkowski space-
time.

The preceeding sections have focused on some prototypical observers

accelerating eternally at a constant rate. This is clearly unphysical, since a real

observer will go through various starts and stops. Uniform acceleration is a

good approximation as long as the observer maintains a constant acceleration

on a timescale �⌧ & A�1. Nevertheless, it is clear that we would like to study

more general motions. This will necessarily be more di�cult since we no longer

have time-translation symmetry along the worldline.

For simplicity and concreteness, let us assume the observer is acceler-

ating only in one spatial direction, say along the x-axis. Then her worldline is
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given by

Oµ(⌧) =

0BB@
t(⌧)
x(⌧)
y0
z0

1CCA . (2.38)

Relativity places a strong restriction on this worldline: for ⌧ to be proper time,

the components of the observer’s velocity v = dO/d⌧ must satisfy

� 1 = v2 = �ṫ2 + ẋ2, (2.39)

where here and after we will use dots to denote ⌧ -derivatives along the world-

line. In other words we do not get to freely specify both t(⌧) and x(⌧). This

condition can be conveniently parametrized in terms of a single function '(⌧)

along the worldline

ṫ(⌧) = cosh'(⌧), ẋ(⌧) = sinh'(⌧). (2.40)

Note that this is dimensionally correct since c = 1. Clearly '(⌧) carries the

interpretation of the local rapidity of the observer’s frame (measured with

respect to some inertial reference frame, say that of O). We immediately have

that

t(⌧) = t0 +

Z ⌧

⌧0

d⌧ 0 cosh'(⌧ 0), x(⌧) = x0 +

Z ⌧

⌧0

d⌧ 0 sinh'(⌧ 0). (2.41)

For example, consider an inertial observer O boosted by a constant rapidity

'0 with respect to the fiducial, inertial observer O, whose frame coordinates

are just the ambient coordinates. Synchronising their clocks and locations at

t0 = ⌧0 = x0 = x̂0 = 0 one finds that her worldline is

t(⌧) = cosh('0)⌧, x(⌧) = sinh('0)⌧, (2.42)
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which is to say that we recover the Lorentz transformation for a boost.

This parametrization makes clear that the data of an observer arbi-

trarily accelerated along one direction consists of her initial condition O(⌧0) =

(t0, x0, y0, z0), and a single function ' = '(⌧). More generally, if her accelera-

tion has components along n spatial axes, then we need n� 1 such functions.

Since the Christo↵el symbols of flat spacetime all vanish, one finds easily that

her acceleration is

aµ =

✓
'̇ sinh'
'̇ cosh'

◆
=) a2(⌧) = '̇2(⌧). (2.43)

For example, a uniformly accelerated observer has '̇ ⌘ A = constant, thus

'(⌧) = A⌧ +'0. The standard Rindler observer is given by choosing ⌧0 = t0 =

'0 = 0 and is usually normalized to x0 = A�1; this recovers (2.11).

The frame of the generally accelerated observer is similar to but, in

many important ways, can be quite di↵erent from the uniform case. Solving

the Fermi-Walker conditions is easy for the same reason: the problem is es-

sentially 2D, so orthonormality of the frame (2.5) is su�cient to write down

the answer. Indeed, the observer’s veilbein is

eµâ(⌧) =

0BB@
cosh'(⌧) sinh'(⌧) 0 0
sinh'(⌧) cosh'(⌧) 0 0

0 0 1 0
0 0 0 1

1CCA . (2.44)

The Fermi-Walker tensor (2.6) has only two non-vanishing components ⌦tx =

�⌦xt = '̇ and one can easily verify that this veilbein satisfies (2.7).

Unlike the uniformly accelerated case, the Fermi-Walker coordinates

may not cover the full causal diamond of O. This is because a pair of spatial
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geodesics emanating orthogonally from O’s worldline may intersect at some

event p inside the diamond, in which case our prescription does not give p a

unique set of frame coordinates. Nevertheless for events p within a tubular

neighborhood of O(⌧) of proper width on the order of |a(⌧)|�1 we can find

unique frame coordinates.11

In particular, in this neighborhood, the Klein-Collas map (2.8) at first

order provides an exact coordinate transform into the frame coordinates. Ex-

actness is again a consequence of the vanishing of the Christo↵el symbols. The

map reads

t(xâ) = t0 +

Z ⌧

⌧0

d⌧ 0 cosh'(⌧ 0) + x̂ sinh'(⌧)

x(xâ) = x0 +

Z ⌧

⌧0

d⌧ 0 sinh'(⌧ 0) + x̂ cosh'(⌧)

y(xâ) = ŷ

z(xâ) = ẑ.

(2.45)

Di↵erentiating these expressions we obtain the Jacobian

⇤µ
â =

@xµ

@xâ
=

0BB@
(1 + '̇(⌧)x̂) cosh'(⌧) sinh'(⌧) 0 0
(1 + '̇(⌧)x̂) sinh'(⌧) cosh'(⌧) 0 0

0 0 1 0
0 0 0 1

1CCA , (2.46)

from which one immediately obtains the frame metric

ds2 = � [1 + '̇(⌧)x̂]2 d⌧ 2 + dx̂2 + dŷ2 + dẑ2. (2.47)

11This is heuristic. I am not aware of any precise statements in general on the size of this
tubular neighborhood. In all the examples in this thesis except this section, we will find
that the coordinates cover the full causal diamond of their observer.
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As usual this also follows from the general result (2.9). For example, consider

again an observer O uniformly boosted with rapidity '0. One finds that (2.45)

reads

t(xâ) = cosh('0)⌧ + sinh('0)x̂, x(xâ) = sinh('0)⌧ + cosh('0)x̂ (2.48)

i.e. we recover the usual global Lorentz transformation of a boost.

Using these results, we can work out the causal structure of this frame,

assuming that the frame coordinates cover the appropriate lightcone. This

may or may not be the case given a particular observer. We can use the same

basic logic as we did for the uniformly accelerated case in section 2.2. As

before any null curve satisfies ds2 = 0, which in this case yields the di↵erential

equation
dx̂

d⌧
= ± [1 + '̇(⌧)x̂(⌧)] (2.49)

for the future-directed null curves. If the curve passes through x̂0 at ⌧ = ⌧0,

its worldline on the ⌧ � x̂ plane is given by

x̂(⌧) = x̂0e
'(⌧)�'(⌧0) + e'(⌧)

Z ⌧

⌧0

d⌧ 0e�'(⌧
0). (2.50)

By the same argument as the uniformly accelerated case, we see that her event

horizon at time ⌧ , if it exists, is located at

x̂EH(⌧) = �e'(⌧)
Z 1

⌧

d⌧ 0e�'(⌧
0). (2.51)

For example the Rindler observer has '(⌧) = A⌧ and this formula immediately

recovers x̂H ⌘ �A�1 for any ⌧ . The integral converges if ' grows at late times
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at least as fast as '(⌧) ⇠ ↵ ln ⌧ for some ↵ > 1.12 Using (2.51) one can easily

prove that the event horizon will remain at constant distance from the observer

if and only if ' ⇠ ⌧ .

As an example, consider an observer who starts and ends with inertial

motion but goes through some finite period of acceleration. Such an observer

is depicted as O00 in the Penrose diagram, fig. 2.5. The simplest case is to

consider an observer whose velocity asymptotes to some given fixed values

vµ = (cosh'±, sinh'±, 0, 0) as ⌧ ! ±1. This means we want '(⌧) ! 0. An

example for which we can explicitly do the integrals is

'(⌧) = ln (�+ +�� tanh↵⌧) , �± =
1

2
(e'+ ± e'�) . (2.52)

Clearly this rapidity has the correct asymptotics. The observer starts with

some initial rapidity '� in the past and fires her rockets for some duration such

that he monotonically boosts to rapidity '+. The parameter ↵ is an inverse

timescale that controls how fast he accomplishes the boost. Her acceleration

can be calculated with (2.43), yielding

a2 =
↵2�2

� sech4 ↵⌧

(�+ +�� tanh↵⌧)2
, (2.53)

which vanishes exponentially fast as |⌧ | ! 1. According to (2.47), her frame’s

metric is

ds2 = �

1 +

↵�� sech2 ↵⌧

�+ +�� tanh↵⌧
x̂

�2
d⌧ 2 + dx̂2 + dŷ2 + dẑ2. (2.54)

12The converse is not always true: for example '(⌧) = ln(⌧ ln ⌧), which asymptotically
grows faster than ln ⌧ but slower than ↵ ln ⌧ for any ↵ > 1 and which does not give a
convergent integral.

50



2.5 Inertial observers in Friedmann-Robertson-Walker
spacetimes

O
O

O

Figure 2.6: Penrose diagrams of inertial observers O in some flat FRW cos-
mologies. Dotted lines indicate a horizon associated to O. Left: an early era
of acceleration followed by a late era of acceleration. Center: a big bang cos-
mology exiting to a non-accelerating late era. Right: a big bang cosmology
followed by a late period of acceleration.

In this section we turn to inertial observers in Friedmann-Robertson-

Walker spacetimes. This case is obviously of interest for realistic observa-

tions since we are precisely such an observer in precisely such a spacetime.

This example is also an interesting example of a frame: although the back-

ground spacetime is time-dependent, we will see that the Fermi-Walker coor-

dinates cover the entire past lightcone of the observer if there is a big bang,

or the causal diamon if the past is inflating. Since the spacetime is spher-

ically symmetric about any location we will use spherical frame coordinates

xâ = (⌧, ⇢, ✓,�).

Consider some fixed cosmological spacetime described by a flat Friedmann-

Robertson-Walker metric,

ds2 = �dt2 + a2(t)dr2 + a2(t)r2d⌦2. (2.55)
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In what follows we assume the scale factor a(t) is smooth, monotonic, increas-

ing and we will typically assume it asymptotes to a(t0) = 0 at the beginning

of time, at redshift z ! 1.13 In particular we do not need to assume the scale

factor solves the Friedmann equations.

We will show that the metric expressed in Fermi-Walker coordinates

takes the form(66)

ds2 = g⌧⌧ (⌧, �)d⌧
2 + d⇢2 +R2(⌧, �)d⌦2, (2.56)

where � = �(⌧, ⇢) is a function measuring the redshift of the event located at

(⌧, ⇢) given below, and R2 = a2r2 measures the proper area of the horizon. In

the rest of this section we derive the metric coe�cients; along the way we will

work out the transformation rules for arbitrary tensorial quantities.

Clearly our main task is to work out the spacelike geodesics orthogonal

to O. From here out we take O to reside at the spatial origin of co-moving

coordinates (2.55), without loss of generality. Fix a time ⌧ along the worldline.

Denote the geodesic we want by �(⇢) = (t(⇢), r(⇢), ✓O,�O) where ⇢ is proper

distance along the geodesic; we normalize ⇢ = 0 on O and we are trying to find

the functions t(⇢), r(⇢). Since the geodesics are spacelike they will minimize

the proper length

L[�] =

Z ⇢

0

d⇢0
"
�
✓
dt

d⇢

◆2

+ a2(t)

✓
dr

d⇢

◆2
# 1

2

. (2.57)

13For a big bang cosmology this means the big bang hypersurface t = t0 (we often take
t0 = 0). We also consider cosmologies which are exponentially inflating in the infinite past
t0 ! �1. Later we will drop the smoothness assumptions to allow for phase transitions.
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One immediately sees that a2(t)dr/d⇢ = C is constant along the geodesic.

Demanding that ⇢ is proper length and that the geodesic is normal to O at

⇢ = 0 tells us that C = a(⌧) and dt/d⇢ = ±
p
a2(⌧)/a2(t)� 1. The geodesic

minimizes spatial length, and a(t) decreases as t runs back into the past, so

we must take the minus sign.

We see that to integrate the geodesic equation it is convenient to use

the parameter

� =
a2(⌧)

a2(t)
= (1 + z)2 . (2.58)

In terms of this we have that dt/d⇢ = �
p
� � 1. Here the second equality

points out that � is directly related to the redshift between the event along

the geodesic, which has FRW time t, and the observer’s time ⌧ . Clearly � = 1

when the geodesic originates on O’s worldline and increases as ⇢ increases, and

� ! 1 as the geodesic runs arbitrarily backward in cosmic time t.

The geodesics can be written in integral form in terms of ⌧ and �. We

can also get a formula for the proper length ⇢ along the geodesics. These are

su�cient to transform any tensor into the frame. Let b denote the inverse of

the scale factor, i.e. the function such that b(a(t)) = t. Inverting (2.58) gives

the FRW time in terms of observer time ⌧ and the redshift along the geodesic:

t(⌧, �) = b

✓
a(⌧)p
�

◆
. (2.59)

Re-arranging (2.58) as a(t) = a(⌧)/
p
�, di↵erentiating with respect to ⇢, and

using the inverse function theorem to write b0(a(t)) = 1/ȧ(t) one finds

⇢(⌧, �) =
a(⌧)

2

Z �

1

b0
✓
a(⌧)p
�̃

◆
d�̃

�̃3/2
p
�̃ � 1

. (2.60)
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To get the co-moving radial coordinate r = r(⌧, �), note that we have

dr

d⇢
=

dr

d�

d�

d⇢
; (2.61)

solving this for dr/d� and using similar manipulations we find

r(⌧, �) =
1

2

Z �

1

b0
✓
a(⌧)p
�̃

◆
d�̃

�̃1/2
p
�̃ � 1

. (2.62)

In order to transform co-moving quantities into the frame we need to

work out the derivatives of the coordinate transformation. The equations

above define a set of coordinate transformations between coordinates {t, r},

{⌧, �}, and {⌧, ⇢}. The situation is summarized by the diagram:

{⌧, �} {t, r} = xµ

xâ = {⌧, ⇢}

G
H

F

(2.63)

where the images are given by (2.59), (2.60), (2.62), and composition. The

{⌧, �} coordinates express the geometry in terms of redshifts directly, but lead

to messy formulas (in particular a non-diagonal metric). The transformation

to Fermi-Walker coordinates, in which the metric takes the form (2.56), is

given by the map H = G � F�1. Doing some calculus with (2.63) one finds

that

⇤µ
â = (dH�1)µâ =

✓
⇤t

⌧ ⇤t
⇢

⇤r
⌧ ⇤r

⇢

◆
(2.64)
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where the coe�cients are, after some integrations by parts,

⇤t
⌧ =

@t

@⌧
� @⇢

@⌧

@t/@�

@⇢/@�
= ȧ(⌧)

p
�F(⌧, �)

⇤r
⌧ =

@r

@⌧
� @⇢

@⌧

@r/@�

@⇢/@�
= � ȧ(⌧)

a(⌧)
F(⌧, �)

p
�(� � 1)

⇤t
⇢ =

@t/@�

@⇢/@�
= �

p
� � 1

⇤r
⇢ =

@r/@�

@⇢/@�
=

�

a(⌧)
.

(2.65)

In these formulas, the function F is given by

F(⌧, �) =

"
b0
✓
a(⌧)p
�

◆
+ a(⌧)I(⌧, �)

r
� � 1

�

#
, (2.66)

where I is the integral

I = I(⌧, �) =
1

2

Z �

1

b00
✓
a(⌧)p
�̃

◆
d�̃

�̃
p
�̃ � 1

. (2.67)

To do the full four-dimensional transformations one just maps the angular

coordinates with the identity, i.e. ⇤✓✓ = ⇤�� = 1, with all other components

vanishing.

With these expressions in hand, we are ready to work out any tensorial

quantities in the frame. As a warmup it is a good exercise to check that the

metric transforms correctly to the Fermi-Walker form (2.56). Transforming

from FRW coordinates gâb̂ = ⇤µ
â⇤

⌫
b̂
gµ⌫ and writing a(t) using (2.58) one finds

that the ⇢� ⇢ component is

g⇢⇢ = 1. (2.68)

Similar but slightly more involved manipulations give

g⌧⌧ = �ȧ2(⌧)F2(⌧, �). (2.69)
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The metric components along the spheres also transform: we get

g✓✓ = R2(⌧, �) := a2(⌧)r2(⌧, �)/�, g�� = R2(⌧, �) sin2 ✓. (2.70)

It is straightforward to show by direct calculation that the o↵-diagonal metric

coe�cients vanish. These results reproduce those in (66).

Cosmological constant (w = �1)
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Figure 2.7: Co-moving (black dashed) and frame (blue) coordinate grids for
an inertial observer O (thick blue line) in purely exponential inflation with
H0 = 1, a0 = 1, t0 = 0. The purple curves are O’s event horizon, and we have
also drawn her stretched event horizon as a dashed black line.

A period of exponential inflation is described by the FRWmetric (2.55),

with the scale factor and its inverse

a(t) = a0e
H0(t�t0), b(a) = H�1

0 ln a/a0 + t0. (2.71)
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It is convenient to leave a0 and t0 as free parameters so we can match to

another cosmological epoch. From these formulas one can easily find explicit

expressions for the frame coordinates. Using (2.59), (2.60), and (2.62) we get

t(⌧, �) = ⌧ �H�1
0 ln

p
�, r(⌧, �) =

p
� � 1

a(⌧)H0
, ⇢(⌧, �) = H�1

0 sec�1
p
�. (2.72)

In this example one can easily invert the time-independent function ⇢ = ⇢(�)

to obtain �(⇢); plugging this into the formulas for t, r then gives an explicit

coordinate transform purely in terms of the frame coordinates ⌧, ⇢.14 Although

⇢ can always be inverted like this in principle, it is hard to find examples where

one can do it in terms of elementary functions. Using (2.9), (2.69), and our

result above for r(⌧, �) we have

ds2 = �d⌧ 2

�
+ d⇢2 +

� � 1

H2
0�

d⌦2

= � cos2(H0⇢)d⌧
2 + d⇢2 +H�2

0 sin2(H0⇢)d⌦
2.

(2.73)

In writing the second line we used the inverse of ⇢. We have obtained the

static de Sitter metric, as one would expect.(66) As explained earlier the frame

coordinates cover the static patch of de Sitter space because the spacetime is

inflating in the arbitrary past. One can get the conventional form ds2 =

�(1�H2
0R

2)d⌧ 2+(1�H2
0R

2)�1dR2+R2d⌦2 by transforming sinH0⇢ = H0R.

Clearly the event, particle and apparent horizons all occur at � ! 1

or H0⇢ = ⇡/2 as one expects. The proper area of all of these horizons is

constant and given by Ahorizon ⌘ 4⇡H�2
0 . Indeed the proper area of any

14Explicitly, one has t = ⌧ +H�1
0 ln cosH0⇢, r = (tanH0⇢)/H0a(⌧).
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sphere at constant redshift � is constant in time, A(⌧, �) = 4⇡R2(⌧, �) ⌘

4⇡H�2
0 (� � 1)/�.

Power law scale factors (�1 < w  1)
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Figure 2.8: Co-moving and frame coordinates in a kinetic-energy dominated
big bang cosmology with a0 = 1, t0 = 1, in the same notation as fig. 2.7.
In red we have also plotted some lines of constant redshift parameter (� =
1.01, 1.05, 1.2, 1.5, 2, 4, 10). The thick purple curve is now the apparent horizon
while the thick red line is the big bang hypersurface � ! 1.

Another set of simple and relevant examples are the big bang cosmolo-

gies with power-law scale factors a ⇠ t↵. These cosmologies have curvature

singularities at the big bang t = 0. A generic value of ↵ gives transformation

laws in terms of some hypergeometric functions, but much of the physics is

transparent. For concreteness here we take a kinetic-energy dominated uni-
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verse ↵ = 1/3 for concreteness, but the generalization is obvious in principle.

The scale factor is

a(t) = a0

✓
t

t0

◆1/3

, b(a) = t0

✓
a

a0

◆3

. (2.74)

Here again a0, t0 are free parameters. Using (2.59), (2.60), and (2.62), we get

the usual transformations

t(⌧, �) = ⌧��3/2, r(⌧, �) =
3⌧

a(⌧)

r
� � 1

�
, ⇢(⌧, �) = ⌧

1 + 2�

�

r
� � 1

�
. (2.75)

Again using (2.9), (2.69) we find that the metric takes the simple form

ds2 = �
✓
2� � 1

�

◆2

d⌧ 2 + d⇢2 +

✓
3⌧

�

◆2

(� � 1)d⌦2. (2.76)

Contrary to the exponentially inflating case, here g⌧⌧ is finite as � ! 1,

reflecting the fact that this spacetime has no event horizon. In the same limit,

the spatial spheres shrink to zero radius: this is the big bang. The radius

of the spatial sphere at any fixed redshift grows linearly in observer time. In

particular, one finds easily that the apparent horizon is located at constant

redshift parameter �AH = (1 +
p
5)/2.

Junctions of epochs

When we measure cosmological perturbations from the early inflation-

ary era, we view them after they pass through some of the later cosmological

evolution. In particular, in order to solve the classic “horizon problem” one

has to assume a non-accelerating era at some point after inflation ends. We
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are thus interested in studying the precise evolution of the perturbations, or

more generally any observables, through some combination of cosmological

epochs. Continuing in the vein of the previous two sections, we focus on a

universe which is exponentially inflating at early times and then exits into a

kinetic energy-dominated phase. The latter has a decelerating scale factor,

a(t) ⇠ t1/3.

We can formulate the problem in some generality. Consider a universe

which we divide into two periods around some time t0. The scale factor is

a(t) =

(
aE(t), t  t0
aL(t), t � t0.

(2.77)

for example a period of inflation followed by some power law

aE(t) = a0 expH0(t� t0), aL(t) = af (t/t0)
↵. (2.78)

Although a(t) should in reality be smooth, it is convenient to allow for a junc-

tion where some derivatives are discontinuous. In our example we can satisfy

continuity of the zeroth and first derivatives by af = a0, t0 = ↵H�1
0 . If

we want a decelerating phase ↵ < 1 then the second derivative is necessarily

discontinuous (since the universe abruptly switches from accelerating to decel-

erating). This can be accounted for in the Einstein equations by a thin shell

of stress-energy at the junction, by the Israel matching conditions.

Some care has to be taken in working out the geometry. In particular

we have to be careful when inverting the scale factor to get b = b(a). This

function will also have discontinuous second derivative, but all the coordinate
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transforms are perfectly continuous. Since a(t) is monotonic we have a  a0

for t  t0 and the same with the inequalities reversed. In our example

b(a) =

(
bE(a) = H�1

0 ln(a/a0) + t0, a  a0
bL(a) = H�1

0 (a/a0)3/3, a � a0.
(2.79)

Clearly b and b0 are continuous at a = a0, but not b00.

Let us work out the transformations (2.59), (2.62). Note that t and ⌧

coincide on O’s worldline, so we write t0 = ⌧0 = H�1
0 /3. Composing b with

a(⌧)/
p
� breaks up the ⌧ � � plane into three regions (early, middle and late)

as shown in figure 2.9. For any early frame time ⌧  ⌧0 and any 1  �  1

it is clear that we can put b(a(⌧)/
p
�) = bE(aE(⌧)/

p
�). In the late region

⌧ � ⌧0�3/2 we need bL and aL. The middle region ⌧0  ⌧  ⌧0�3/2 is the subtle

one: we need to use bE but aL because � � 1. In all we find the coordinate

transformation for FRW time t by

t(⌧, �) =

8><>:
⌧ �H�1

0 ln
p
� ⌧  ⌧0

H�1
0 [(1 + ln(⌧/⌧0))/3� ln

p
�] , ⌧0  ⌧  ⌧0�3/2

⌧��3/2, ⌧ � ⌧0�3/2.

(2.80)

It is instructive to check that this function is continuous in both variables. To

get the co-moving radial coordinate r = r(⌧, �) we have to do some integrals

along the spacelike geodesics, breaking up the domains in the ⌧ � � plane in

the same way. One finds that

r(⌧, �) =
1

a(⌧)H0

8>><>>:
p
� � 1, E

⌧
⌧0

q
�⇤�1
�⇤

+
p
� � 1�

p
�⇤ � 1 M

⌧
⌧0

q
��1
�
, L

(2.81)
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where �⇤ = �⇤(⌧) is the redshift parameter at which the spatial geodesic

orthogonal to O(⌧) crosses the junction,

⌧

⌧0
= �3/2

⇤ . (2.82)

Finally, using (2.69) and (2.70) we can write down the metric coe�cients (2.9)

in the frame. Being careful with the domains, one finds that g⌧⌧ = �1/� in

the early region, �((2� � 1)/�)2 in the late region, and

g⌧⌧ = �
"✓

⌧

⌧0

◆�1 p
� + 2

r
� � 1

�

r
�⇤ � 1

�⇤
�
✓
⌧

⌧0

◆�1
r
� � 1

�

�p
� � 1�

p
�⇤ � 1

�#2

(2.83)

in the middle region. Once again, the early and late regions match the results

from the previous sections, and g⌧⌧ is continuous everywhere.

Since the scale factor is not accelerating in the future, our observer O

does not have an event horizon. However, he does see an apparent horizon.

At early times he might have mistaken it for the de Sitter horizon, but after

the phase transition he will see the horizon recede and grow in area, with

RAH ! 1 as t, ⌧ ! 1. At early times we have �AH = 1, and in the late

region �AH = (1 +
p
5)/2, in accordance with our earlier results. During the

middle period we have

�AH(⌧) =
1

4

✓
A2(⌧) + 1

A(⌧)

◆2

, A =
⌧

⌧0

r
�⇤ � 1

�⇤
�

p
�⇤ � 1. (2.84)

It is easy to check that this continuously interpolates between the early and

late periods.
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Figure 2.9: Co-moving and frame coordinates in a universe that inflates with
Hubble constant H0 = 1 followed by a kinetic dominated phase ↵ = 1/3 after
t = t0 = ↵H�1

0 . As indicated in the text, the coordinates are broken into three
regions by the thin solid black lines, but otherwise the notation is the same
as the previous two plots. We have again drawn some particular contours of
constant redshift parameter (� = 1.01, 1.05, 1.4, 20).
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2.6 Accelerated observers in Anti-de Sitter spacetime

O

O00 O01

O10

O11

Figure 2.10: Penrose diagram of Anti-de Sitter space-
time (specifically, the universal cover with the timelike
direction uncompactified). The pair of wavy horizontal
lines demarcate one AdS period �⌧ = 2⇡L. The fidu-
cial bulk observer O lives in the deep “infrared” r = 0
in the coordinates (2.85). Much like flat spacetime, we
have drawn the four horsemen of AdS, a set of accel-
erated observers. The boundary-to-boundary observer
O11 is studied in detail in the text.

Anti-de Sitter spacetime is a solution of the Einstein equations sourced

only by homogeneous and negative energy density. Equivalently it is the maxi-

mally symmetric Lorentzian spacetime with negative Ricci scalar. Today, AdS

spacetime, or more generally spacetimes with AdS asymptotics, are widely

studied as half of the AdS/CFT correspondence.(48) The literature on AdS

spacetimes is enormous and the intention in this section is not to add to the

noise or repeat known things, but simply to make a few points about the role

of physical observers in AdS.
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For orientation and consistency with our earlier treatment of Schwarzschild

and de Sitter spacetimes, let us consider global coordinates covering empty

AdS spacetime:

ds2 = �f(r)dt2 + f�1(r)dr2 + r2d⌦2
d�2, f(r) = 1 +

r2

L2
(2.85)

where here L = �3⇤/2 is known as the AdS length. The radial coordinate

runs up to 1 and I will always consider the universal cover in which time t

also runs over the whole real line. Given the interest in di↵erent dimensional

versions of AdS I will leave the dimension of the sphere arbitrary.

More generally, it will often be convenient to describe d-dimensional

AdS as a hyperboloid embedded inR2,d�1. We use coordinatesXA = X1, X2, . . .

for the embedding space. The hyperboloid is defined by

�
�
X1

�2 � �
X2

�2
+

d+1X
i=3

�
X i

�2
= �L2, (2.86)

as is customary. The metric on the embedding space is “flat”, with two timelike

directions,

ds2 = �
�
dX1

�2 � �
dX2

�2
+

d+1X
i=3

�
dX i

�2
. (2.87)

Then the metric on AdS is just the metric on the hyperboloid induced by a

particular embedding. For example, to get our metric (2.85) we can set

X1 = L

r
1 +

r2

L2
sin

t

L

X2 = L

r
1 +

r2

L2
cos

t

L

X i = rxi, i = 3, . . . , d+ 1.

(2.88)
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where the xi parametrize a unit Sd�2, that is we have
Pd+1

i=3 (x
i)
2
= 1. We

see that letting t run over the whole real line means we are covering the hy-

perboloid an infinite number of times, thus the terminology “universal cover”;

one only needs an AdS period �t = 2⇡L to cover it once. Note that in the

case d = 2, the “radial” variable has to be taken to run from �1 to +1 in

order to cover the full hyperboloid.

Acceleration in the bulk

Where exactly are the observers in this picture? Note that AdS space-

time is a big gravitational well: things want to go toward r ! 0. If we drop

a test particle at finite r it will oscillate around the origin forever. Thus it is

natural to define a fiducial observer O as one sitting inertially at r = 0. In

fact, we can work out the frame of an observer O at any fixed r, including the

fiducial observer O at r = 0, without much e↵ort.

Consider an observer O at fixed proper distance � from the origin.

Such an observer is O00 on the Penrose diagram. Her radial coordinate is

r ⌘ rO = L sinh �/L, at which location we have f(rO) = cosh2 �/L. Working

on the t� r plane we easily obtain her kinematics

O(⌧) =

✓
⌧ sech �/L
L sinh �/L

◆
, v =

✓
sech �/L

0

◆
, a =

✓
0

L�1 sinh �/L

◆
. (2.89)

Note that to have the observer arbitrarily close to the boundary, that is � !

1, the r-component of her acceleration will diverge ar ! 1. However, the
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magnitude of her proper acceleration is bounded

a2 = L�2 tanh2 �/L (2.90)

which is simply a2 = 1/L2 at the AdS boundary.

Let us work out the frame of one of these fixed-radius observers. The

only non-vanishing component of the Fermi-Walker tensor is

⌦tr = �⌦rt = L�1 tanh �/L (2.91)

and one finds easily the vielbein

eµâ =

✓
sech �/L 0

0 cosh �/L

◆
, (2.92)

which is supplemented by the usual expression along the angular directions,

cf. the Schwarzschild case. To get the coordinate transformation, we can solve

for the spacelike geodesics orthogonal to O exactly. Without too much work

one finds the radial geodesics emanating orthogonally from the observer at

⌧ , with initial velocity eµ⇢ and parametrized by proper radius ⇢, are given by

r(⇢) = L sinh[(� + ⇢)/L]. Thus the coordinate transformation on the t � r

plane is

t(xâ) = ⌧/
p

f(rO), r(xâ) = L sinh[(� + ⇢)/L] (2.93)

which, leaving the angular coordinates alone, yields the metric

ds2 = �cosh2(� + ⇢)/L

cosh2 �/L
d⌧ 2 + d⇢2 + L2 sinh2 � + ⇢

L
d⌦2

d�2. (2.94)
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The fiducial observer O fixed at the spatial origin is just such an observer with

� ! 0. Her frame coordinates coincide with a standard global metric on AdS,

which is typically described by the embedding

X
1
= L cosh

⇢

L
sin

⌧

L

X
2
= L cosh

⇢

L
cos

⌧

L

X
i
= L sinh

⇢

L
xi,

(2.95)

where again the xi parametrize a unit Sd�2.15 The metric in the fiducial

observer’s coordinates is

ds2 = � cosh2 ⇢

L
d⌧ 2 + d⇢2 + L2 sinh2 ⇢

L
d⌦2

d�1. (2.96)

For any radial distance �, these observers have a finite proper accel-

eration, which can be interpreted as the force required for them to resist the

pull of Anti-de Sitter space toward its spatial origin ⇢ = 0. However, these

observers do not have horizons! Indeed, they can see the full bulk: a lightlike

signal sent radially toward O from ⇢0 will always take a finite time

�⌧ = cosh
�

L

Z 0

⇢0

d⇢

cosh(� + ⇢)/L
< 1 (2.97)

to reach her. Moreover, consider the metric of such an observer’s frame at her

spatial infinity ⇢! 1. The boundary metric is

ds2 ! e2(⇢+�)

� d⌧ 2

e2� + e�2�
+

L2

4
d⌦2

�
(2.98)

15Again for d = 2 we need to let ⇢ run over the full real line, not only positive values, in
order to cover the full hyperboloid.
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which is conformal to R⌧ ⇥ Sd�2 by the simple rescaling ⌧ ! ⌧
p
e2� + e�2�/2.

This is true for any fixed �, and in particular for the observer at the boundary

� ! 1.

There is another class of uniformly accelerated observers in the bulk

that do experience horizons. These observers are quite di↵erent from the

ones given above. In direct contrast to the previous case, their acceleration is

bounded from below by the AdS length a2 � L�2. Rather than sitting at a

fixed radius, they go from the boundary, down into the bulk, and then back

out to the boundary. They thus resemble Rindler observers in flat spacetime.

I have drawn them as O11 on the Penrose diagram.

To write these observers down, it is very convenient to do some work in

the embedding space R2,d�1. The reason is because the embedding preserves

dot products and geodesics, so the frame can largely be constructed in the

embedding space, as we will see explicitly in short order. Consider an observer

O(⌧) moving along a Rindler-like trajectory in the embedding space,

OA(⌧) = L

0BBBBBB@
↵�1 sinh ⌧̂

↵�1
p
1 + ↵2

↵�1 cosh ⌧̂

xi
0

1CCCCCCA , ⌧̂ := ↵⌧/L. (2.99)

Here the xi
0 parametrize the fixed angular position of the observer and the di-

mensionless constant ↵ 2 (0,1) controls the acceleration of the observer as we

will see momentarily. This worldline lives on the hyperboloid (2.86). For con-

venience we can orient the observer’s boost axis along the x̂ direction defined
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by x4
0 = 1, x5

0, . . . = 0. This observer has proper “embedding acceleration”

a22,d�1 = ↵2/L2. (2.100)

In terms of the fiducial observer O’s coordinate system, the boundary-to-

boundary observers are accelerated along the ⇢ axis.

To find the frame we need to find the spacelike geodesics normal to this

worldline on the hyperboloid. Consider the observer (2.99). The embedding

space has d+1 dimensions. To find the veilbein we first need to find the vector

fields along the hyperboloid normal to O. Clearly dOA/d⌧ is tangent to the

hyperboloid. The unit (coordinate) vector field N normal to the hyperboloid

has components NA = (X1/L,X2/L, . . .). Using this vector field along O, we

can find the vector fields EA
î

along the path on the hyperboloid orthogonal

to both N and dO/d⌧ , which is precisely the spacelike part of the veilbein we

need. Doing so and setting EA
⌧ = dOA/d⌧ as usual, we obtain the frame basis

in the embedding space

EA
â (⌧) =

0BBBBBB@
cosh ⌧̂

p
1 + ↵�2 sinh ⌧̂ 0

0 ↵�1 0

sinh ⌧̂
p
1 + ↵�2 cosh ⌧̂ 0

0 0 1d�2⇥d�2

1CCCCCCA . (2.101)

In particular, the second column contains the components of Ex̂, the unit

spacelike vector along the boost being performed by the observer, i.e. the

radial AdS coordinate oriented outward toward the boundary.

Finally, we just need the geodesics. Although we could do an expansion

around the worldline, the problem can be solved exactly without too much
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e↵ort. The best way to find them is to extremize the proper length along a

spacelike path � = �(⇢) = XA(⇢), constrained to the hyperboloid,

L[�] =

Z
d⇢

"
1

2

✓
dX

d⇢

◆2

+ �
�
X(⇢)2 + L2

�#
. (2.102)

From this expression it is easy to show that the tensor kAB = XA(dX/d⇢)B �

XB(dX/d⇢)A is conserved along the geodesic. It has the properties

k2 = �2L2, kA
BX

B = L2dX
A

d⇢
, kA

B

dXB

d⇢
= XA =) d2XA

d⇢2
=

XA

L2
. (2.103)

Thus the general spacelike geodesic can be written as a sum of exponentials, or

for our purposes, as a sum of hyperbolic trig functions. We want the spacelike

geodesics originating at some time ⌧ along O(⌧). Set the boundary condition

that the geodesic starts on the observer’s worldline XA
��
⇢=0

= OA(⌧) and has

initial “velocity” given by (2.101), i.e. dXA/d⇢
��
⇢=0

= EA(⌧). Then we have

that the geodesics are

XA(⇢) = OA(⌧) cosh
⇢

L
+ LnîEA

î
(⌧) sinh

⇢

L
, (2.104)

where nî = nî(⌦) is a unit coordinate vector setting the initial “velocity” of

the geodesic, say parametrized by angles as in (2.4). Using this, one finds

the geodesic with initial spatial “velocity” nî emanating from the observer’s
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location O(⌧) at any time ⌧ is given by

XA(⌧, ⇢,⌦) =
L

↵

0BBBBBBBBBBBB@

f(⇢, ✓) sinh ⌧̂

f(⇢, ✓)
p
1 + ↵2 � ↵2 sinh ⇢

L
cos(✓)

f(⇢, ✓) cosh ⌧̂

↵ sinh ⇢
L
n2̂(⌦)

...

↵ sinh ⇢
L
n

ˆd�2(⌦)

1CCCCCCCCCCCCA
, (2.105)

where

f(⇢, ✓) = cosh
⇢

L
+
p
1 + ↵2 sinh

⇢

L
cos ✓ (2.106)

parametrizes the redshift of an event at spatial coordinates (⇢,⌦) as measured

by the observer; this is ⌧ -independent by time-translation invariance, and �i-

independent because we still have azimuthal symmetry.

The last result, (2.105), is precisely the coordinate embedding of the

observer’s frame onto the hyperboloid. In other words, we can plug it in to

the flat metric (2.87) to get the induced metric on AdS:

ds2 = �f 2(⇢, ✓)d⌧ 2 + d⇢2 + L2 sinh2 ⇢

L
d⌦2

d�2. (2.107)

This elegant result gives us a coordinate system covering precisely the frame

of the observer. As one can easily see from the pictures, the frame is directly

analogous to Rindler space. If we let ⇢ run over all the reals, we see that

the coordinates cover a pair of “wedges”. The observer’s worldline in these

coordinates is, as usual, simply given by ⇢ ⌘ 0. It is easy to work out that her

proper acceleration has constant magnitude

a2 =
1 + ↵2

L2
(2.108)
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which runs from 1/L2 up to 1. At each slice of constant frame time ⌧ , this

observer sees space as a hyperbolic set of d�2 spheres, and the redshift factor

f(⇢, ✓) increases both with the distance ⇢ from the observer and the angle ✓

between the observer’s acceleration axis and the point of observation.

Acceleration in d = 2

The case of two bulk dimensions is especially simple. There are no

angular directions, only ⌧ and ⇢, while the spatial coordinate ⇢ can take any

real value, not just positive ones.16 The redshift factor is simply

f = f(⇢) = cosh
⇢

L
+
p
1 + ↵2 sinh

⇢

L
. (2.109)

One might guess that the Rindler horizon is at the value ⇢ = ⇢H such that

f(⇢H) = 0. This can be confirmed by integrating ds2 = 0 and checking that a

future-directed null geodesic sent from (⌧0, ⇢0) will reach the observer at ⇢ = 0

in finite time if and only if ⇢0 > ⇢H . Explicitly,

p
1 + ↵2 tanh

⇢H
L

= �1. (2.110)

For a big AdS space, that is expanding ⇢H/L ⌧ 1, and making use of (2.108),

we see that this reduces to exactly the same condition as a Rindler horizon in

flat spacetime.

16The same is true for the fiducial observer’s spatial coordinate �1  ⇢  +1, as
explained above.
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O and O11 in R2,d-1
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Figure 2.11: A boundary-to-boundary observer O11 (thick blue line) with ↵ = 1
and her inertial friend O (thick black line) in Anti-de Sitter spacetime, with
LAdS = 1. Top: both coordinates plotted on the hyperboloid in the embedding
space R2,d�1. Bottom: frame coordinates of O11 (blue) versus the fiducial
embedding coordinates of O (black). The thick purple line denotes the horizons
of O11.
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2.7 Brief remarks, future work

The stated goal of this work is to find a theory of observation, which

should give a systematic way to compute observables causally accessible to

particular observers. At the semi-classical level with probe observers studied

here, this requires some coordinates which cover precisely some particular part

of the observer’s causal past or future. Ideally, it would be best to have three

systematic constructions: coordinates for the past and future lightcones, and

coordinates for the causal diamond. This would allow one to describe the

events that the observer can see, send signals to, and probe by first sending

and receiving a signal, respectively.

The Fermi-Walker frame developed in this chapter has proven to be a

very useful first attempt, but it is not the full answer. As described above, the

Fermi-Walker coordinates do precisely cover the causal diamond of an inertial

observer in any FRW cosmology, and as such are ideal for solving cosmological

problems. To study general observers, however, there are two issues: they do

not behave well for observers whose wordlines only traverse a finite proper

time, and they cannot cross horizons.

Both of these problems stem from the fact that we are using spacelike

geodesics to extend the coordinates away from the worldline of the observer.

Clearly for an observer who is only around for some finite proper time, allowing

the spacelike geodesics to extend out to infinite proper length will cover more

than any of the lightcones of the observer. More importantly, as the geodesics

get near a horizon, then because they are trying to minimize proper length and
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the metric tends to start degenerating, the geodesics tend to start “skimming”

along the horizon by becoming nearly lightlike.

The usefulness of the geodesic construction, on the other hand, is great:

it allows one to have total and explicit control on the coordinates near the

observer’s worldline, and obtain a flat metric. This means one has a very clear

physical understanding of what is going on locally. It would be ideal to find a

construction which has this property but behaves better near the boundaries

of the causal diamond. Of course, it is pretty easy to simply draw the Penrose

diagram and a bunch of spacelike slices emanating from the observer, but one

would really like something with which one can do computations. This is the

subject of current work.
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Chapter 3

Unitarity

We have to remember that what we observe is not nature herself, but nature

exposed to our method of questioning.

Heisenberg

The core principle underlying quantum physics is unitarity. Fundamen-

tally, unitarity is based on the notion that if one performs a measurement on

some system, the outcome can be one of some number of possibilities, each

with some probability, and the sum of these probabilities must be unity. Put

simply, if one does a measurement, one must get some answer.

This part of quantum mechanics is a set of statements about the out-

comes of measurements. It lacks any ontology; one can make these statements

without specifying anything at all about the system. On the other hand, this

formulation makes central the notion that measurements are things which

happen: someone, or something, has to make the measurement.

The standard implementation of unitarity is that any system can be

described via states or density matrices in a Hilbert space H, and time evolu-
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tion is described by a unitary operator U : H ! H. This definition embodies

two distinct physical notions : the preservation of unity of total probability in

any measurement, and the perfect time-reversability of the system.

This distinction is not trivial. The notion that any given measurement

must have probabilities summing to one is essentially tautological. Conversely,

the absolute and perfect time-reversability of nature is hardly obvious, even

(or perhaps especially) at microscopic scales, and across causal horizons.(40;

68; 69)

The purpose of this chapter is to critically analyze these concepts. In

particular, while it is perhaps obvious that the sum of probabilities of a real

measurement should be one, it is certainly not obvious that this should be

formally extrapolated to an “observable” that no one can actually measure,

like a field correlation function with arguments separated by more than the

size of our horizon today.

Unitarity could naturally be associated to some particular observer

making the measurements. However, implicit in most of the literature, this is

not the way in which unitarity is defined.(70) Most notably, in the presence of

nontrivial gravitational fields, one often describes time evolution as a unitary

operator acting on a Hilbert space to which no physical observer has complete

access.1 The most important example is, simply put, the part of the universe

1That is, the Hilbert space H is often taken to describe physics on some spacelike surface
⌃, say a Cauchy surface, and the intersection of the lightcones of some observer O with this
surface do not generally cover the surface.
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in which we appear to live.

Precisely, if one believes in the standard dark energy scenario ⇤ >

0,(4; 5; 6) or more generally believes that the scale factor of our part of the

universe is accelerating into the asymptotic future, then one is forced to con-

clude that we can only ever see a proper subset of spacetime (in fact, of space),

even if we were immortal and kept taking measurements forever. Moreover,

another observer spatially separated from us can only ever see his own part

of spacetime, only partially coinciding with our own, if at all. The reason is

simply because photons travelling toward the observer from a su�ciently far

distance cannot outpace the Hubble expansion that the observer would have

measured in the intervening region, in which Hd > c.

Here I will take seriously the possibility that neither we nor any of our

hypothetical immortal friends will ever able to view and/or interact with the

full extent of the universe. It is the core ideal of this thesis that one needs

to have a systematic theory for defining and computing observable quantities

within precisely the regions which one can causally access. The first question

that must be answered is: what are the data of the system, and how do we

implement unitary evolution? Moreover, how will multiple observers compare

their observations in a manner consistent with the principle of equivalence?

The purpose of this chapter is to move toward a construction of this

data and its unitarity. The problem can be formulated very generally: fix

an observer O with proper time ⌧ in some spacetime (M, g), viewing perhaps
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some field content '.2 What Hilbert spaces H⌧ does this observer need to use

to describe his measurements, and how do we implement unitary evolution

U : H⌧ ! H⌧ 0 on these spaces? If a pair of observers use Hilbert space

H(O(⌧)), H(O(⌧)), how do we translate statements about observables acting

on these spaces?

To begin, I review how these questions are answered in quantum me-

chanics and in quantum field theory in flat spacetime. I then review how this

is usually generalized to curved spacetimes, and emphasize that this formal-

ism generally describes unitarily evolving data that no particular observer can

actually measure. I review the usual calculations of basic observables like cor-

relation functions and discuss their physical interpretation in di↵erent frames

of reference.

Following this, I consider how to translate data between observers. I

study the uniformly accelerated observer in flat spacetime and his inertial

friend as the canonical example, and recover the usual Unruh e↵ect. I then

turn to the problem of extracting predictions for some observer’s measurements

given a global, semi-classical picture of some system that no single observer

can completely measure. As an example of the latter, I study the global and

observer-centric description of scalar fluctuations in an inflating universe.

2The field content, in general, should contain the metric g or an equivalent set of data.
In this thesis I will take g as a set of classical external parameters, possibly including their
quantum fluctuations, although these will often be supressed.
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3.1 Definitions of unitarity

Throughout this thesis, I will assume the essential structure of any

quantum system as follows. Fix some system under study. The state of the

system at some time t is a vector | i = | (t)i in a Hilbert space H = Ht (over

the complex numbers); or more generally can be described by a density matrix

⇢ : H ! H. For simplicity and without loss of generality I will always take

the states to be normalized h | i = 1; density matrices are also normalized

as tr ⇢ = 1.

I take the Born rule as the fundamental interpretive postulate of quan-

tum mechanics.3 It defines what I mean by a measurement and the probability

of outcomes of these measurements. Basic theorems of linear algebra guarantee

that any Hermitian operator A = A† can be diagonalized A =
P

↵ ↵ |↵i h↵|,

and we can use the basis {|↵i} to express any state or operator. In particular,

the identity operator on H can be expressed simply as 1 =
P

↵ |↵i h↵|. The

Born rule is the statement that if one “measures” the operator A then the

probability to obtain any particular eigenvalue ↵ is given by

P (↵) = |h↵| i|2 . (3.1)

This immediately implies that the sum of the probabilities for all outcomes of

any given measurement is unity:X
↵

P (↵) = 1. (3.2)

3I learned this phrase from Weinberg’s textbook on quantum mechanics.(71)
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If the system is described by a density matrix, these generalize easily: we

define P (↵) = tr ⇢ |↵i h↵|, and the condition (3.2) is the same as tr ⇢ = 1.

3.1.1 Unitarity in quantum mechanics

The most commonly encountered formulation of unitarity is that time

evolution is encoded by a unitary map

U : H ! H. (3.3)

Here, the first copy of H contains the initial information and the second copy

contains the final information, but the Hilbert space Ht ⌘ H is the same at

every time t. One often writes

| (tf )i = U(tf , t0) | (t0)i . (3.4)

One usually has in mind a system described by some finite collection of degrees

of freedom q1, q2, . . . , qN with conjugate momenta p1, p2, . . . , pN , satisfying the

canonical commutation relations [qi, pj] = i�ij. The Hilbert space is a rep-

resentation space of this algebra. For example, in ordinary one-dimensional

quantum mechanics on a flat line, q = x, p = �i@x and H is the space of

square-integrable functions.

As described in the introduction to this chapter, this definition of uni-

tarity simultaneously encodes two di↵erent physical properties:

1. Probabilities, as determined by the Born rule (3.1), are preserved by

time evolution (3.3). That is, for any two states | i , |�i we have that

h�(t)| (t)i = h�(t0)|U †(t, t0)U(t, t0)| (t0)i = h�(t0)| (t0)i , (3.5)
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because U † = U�1. In particular, the normalization of any state is

preserved in time. This in turn implies that any measurement of any

Hermitian operator at any time will have outcomes whose probabilities

sum to unity.

2. Time evolution is reversible: given knowledge of the state | (tf )i at

time tf , one can invert U to determine the initial condition | (t0)i =

U�1(tf , t0) | (tf )i.

These two conditions on the map U actually imply each other: you cannot

have one without the other. This is because the Hilbert space at each time is

the same as that at each other time, or more specifically because the dimension

of the Hilbert space is the same for all time. In quantum gravity it is not at

all obvious that this should be the case. For example, one may want to con-

sider an evaporating black hole, a growing cosmological horizon, etc., and the

holographic entropy bounds S  A/4GN suggest that the number of degrees

of freedom needed to describe such a system is time-dependent.(33; 72; 73)

More generally, one can immediately see that there will be some sub-

tleties in generalizing these equations to gravitational contexts. In particular,

the meaning of the time t and the correct definition of the Hilbert space H

may be very murky. Even the mundane example of an accelerated observer in

flat spacetime already presents di�culties: should the observer use the time

t of some inertial observer or, say, his frame time ⌧? Do the accelerated ob-

server O and his inertial friend O need the same Hilbert space to describe their
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experiences? Are their descriptions equivalent, and if so, what is the precise

equivalence? If no particular observer can probe the whole spacetime, should

there even be a “global” Hilbert space? Should the time-evolution act locally

in time or is there only a global notion?4

Fortunately, in non-relativistic quantum mechanics, these issues are not

present. One has already assumed a definite Galilean time coordinate t and

one can give a continuous time evolution in this coordinate. This is famously

embodied in the Schrödinger equation

i
@

@t
| i = H | i (3.6)

which says that the quantum state | i evolves infinitesimally in time via the

Hamiltonian H = H†. This equation is simply the statement that the state

evolves unitarily, can be described locally in time, and has a first time deriva-

tive, in general. Again, these statements have no ontology other than the

existence of a time coordinate; one needs to actually specify some particular

Hamiltonian to obtain a detailed interpretation.

The formal solution to this equation

| (t)i = U(t, t0) | (t0)i (3.7)

expresses the state of the system | (tf )i at any time t in terms of the state at

4I thank Leonard Susskind for a conversation in which he confirmed my suspicion that I
am not the only person who believes that the moral upshot of the firewall paradox is that
the existence of a global Hilbert space is untenable.
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some earlier time t0, evolved via the unitary time-evolution operator

U(t, t0) = T exp

⇢
�i

Z t

t0

dt0 H(t0)

�
. (3.8)

The symbol T denotes time-ordering of the integrals in the Taylor expansion of

U . The time ordering is important because the Hamiltonians at two di↵erent

times will not generally commute. It is easy to verify that this operator is

unitary.

To make this somewhat more concrete, consider a time-independent

system described by a Hamiltonian H. Since H is Hermitian, it can be

diagonalized into energy eigenstates H =
P

n En |ni hn|, where the index

n need not be discrete. A general state at some time t0 may be written

| (t0)i =
P

n cn(t0) |ni, so the complex coe�cients cn(t0) constitute the initial

data of the state. Then the time-evolution operator from the initial state to

the final state is

| (tf )i = U(tf , t0) | (t0)i =
X
n

cn(t0)e
�iEn(tf�t0) |ni . (3.9)

i.e.

U(tf , t0) =

0BBB@
e�iE1(tf�t0) 0 0

0 e�iE2(tf�t0) 0
0 0 e�iE3(tf�t0)

. . .

1CCCA (3.10)

in the energy basis.

As a special case relevant to the rest of this chapter, consider again a

time-independent system, but now one known to consist of some identifiable

subsystems with independent Hamiltonians. We write H =
R
d↵ H↵, with
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the index ↵ labeling the subsystems.5 Each subsystem Hamiltonian can be

diagonalized H↵ =
P

n↵
En↵ |n↵i hn↵|, where En↵ is the energy of subsystem ↵

in its nth energy eigenstate. We can define a basis consisting of product states

|n↵n↵0 · · ·i = |n↵i ⌦ |n↵0i ⌦ · · · . (3.11)

Here we have assumed that the way to combine quantum-mechanical sub-

systems is by taking the tensor product of their respective Hilbert spaces; the

reason for doing this is so that one obtains a linear time-evolution of the whole

system. In terms of these basis states, we may write a general state in the

usual fashion,

| (t)i =
X

n↵n↵0 ···
cn↵n↵0 ···(t) |n↵n↵0 · · ·i (3.12)

where the sum runs over all choices of the subsystem energy levels. The time-

evolution operator then acts as a product,

U = U↵ ⌦ U↵0 ⌦ · · · , U↵(tf , t0) = e�iH↵(tf�t0) (3.13)

which can be written explicitly as

| (tf )i = U(tf , t0) | (t0)i =
X

n↵n↵0 ···
cn↵n↵0 ···(t0)e

�i
R
d↵ En↵ (tf�t0) |n↵n↵0 · · ·i .

(3.14)

5The notation
R
d↵ is shorthand. It means an integral over the continuous part of the

index ↵ and a sum over the discrete part. For example, one could label the states of a free
particle in spherical coordinates by ↵ = {p, `,m} with the momentum p continuous but `,m
discrete.
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3.1.2 Unitarity in flat spacetime

In relativistic theories in flat spacetime, especially quantum field the-

ories, one can proceed similarly. For the rest of this thesis we focus only on

quantum field theories and do not consider any “relativistic quantum mechan-

ics” of single-particle systems.

Consider for concreteness a real scalar field ' in 3 + 1 dimensional

flat spacetime. Classically, the field '(x) and its derivatives @µ'(x) can take

independent values at every spacetime point x. In other words, at any given

time t the field describes an infinite number of degrees of freedom, one for each

x. The Hilbert space is thus continuously infinite-dimensional. Nevertheless

we will easily be able to construct a unitary map of the form (3.3) as we now

proceed to do.

To begin, suppose the classical dynamics are described by a classical

action

S['] =

Z
dt L[', @µ'] =

Z
dtd3x L('(x), @µ'(x)),

where we assume that the Lagrangian is local, i.e. expressed as an integral over

a local Lagrangian density, and for the time being we will take the Lagrangian

have no explicit time-dependence. Define the canonical momenta

⇡ :=
@L

@'̇
. (3.15)

The classical Hamiltonian is then the functional

H['] =

Z
d3x ['̇(x)⇡(x)� L('(x), ⇡(x))] (3.16)
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where as usual we express the integrand in terms of ', ⇡, and their spatial

derivatives only. If one evaluates the Hamiltonian on an arbitrary field config-

uration ', the answer can be time-dependent, but the Hamiltonian does not

have any explicit time-dependence as a consequence of translation invariance

in the inertial time t.

To maintain clarity in the presentation, we will describe the system

in the Schrödinger picture. Thus the time-dependence of the system will be

placed in a wavefunction, not the field operators, which we therefore write as

'̂(x), although we will often drop the hat. Fix any time t. We take the Hilbert

space Ht for the field at time t to be the complex span over the set of field

eigenstates

'̂(x) |'i = '(x) |'i (3.17)

What is meant here by |'0i is a state representing some particular field con-

figuration '(x) = '0(x), thought of as the configuation of the field at a fixed

time. The hatted '̂(x) is the field operator at x, and these states are eigen-

states of all of these operators with eigenvalues '(x). The quantum state of the

field at any given time is a general complex superposition of these states; one

might say that the quantum field can exist as a superposition of classical con-

figurations. By time-translation symmetry, the Hilbert space H constructed

like this at some particular time t is isomorphic to that constructed at any

other time t0. To be precise, one has to prescribe some boundary conditions

on the set of classical field configurations under configuration and then define

the Hilbert space in this way; we return to this point case-by-case.

88



The field eigenstates (3.17) are the continuum analogue of position-

space wavefunctions proportional to Dirac delta functions. In other words,

they satisfy

h'1|'2i = �('1 � '2) (3.18)

where this delta-function (3.18) is defined as an integral kernel as usual, except

in the space of field configurationsZ
D'F [']�('� '0) = F ['0], (3.19)

where F is any functional of the field. The integral
R
D' is always taken over

field configurations satisfying some boundary condition suitable to the problem

we are studying; we will come to this point case-by-case. These equations allow

us to express the identity operator on Hilbert space in the usual way,

1H =

Z
D' |'i h'| . (3.20)

This in turn allows us to discuss the wavefunction of a field: we trade the

familiar position-space wavefunctions  (x, t) of quantum mechanics for wave-

functionals of field configurations  [', t] at some given time. These can be

computed as kernels in field space,

| (t)i =
Z

D' |'i h'| (t)i =:

Z
D' |'i [', t]. (3.21)

More generally, the inner product of our Hilbert space can be expressed as a

functional integral

h 1| 2i =
Z

D'  ⇤
1[', t] 2[', t]. (3.22)
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To get a quantum theory, we need to impose canonical commutation

relations. Here we are thinking of the field as a description of a single degree

of freedom '(x) at each spatial location x with conjugate momentum ⇡(x).

Then the canonical commutation relations are a relation between the field and

its conjugate momentum at di↵erent spatial points, that is

['̂(x), ⇡̂(x0)] = i�(x� x0), (3.23)

which is then represented on the wavefunctionals as

'̂(x) [', t] = '(x) [', t], ⇡̂(x) [', t] = �i
� [', t]

�'

�����
'='(x)

. (3.24)

Classical observables are “promoted” to classical ones in the usual way, that

is by inserting the field operators. For example, the Hamiltonian operator Ĥ

is the classical Hamiltonian functional (3.65) with the field and momentum

treated as operators,

Ĥ = H['̂, ⇡̂] =

Z
d3x H('̂(x), ⇡̂(x)). (3.25)

Now that we have set up the kinematics, we can discuss time-evolution.

In fact, one of the advantages of doing things in the Schrödinger picture is that

we can just write down the answer. Again looking for a map (3.3), one can

write the Schrödinger equation precisely as we did above (3.6). It is solved in

the usual way: write the time-evolution operator

U(tf , t0) = exp
n
�iĤ(tf � t0)

o
(3.26)
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and use it to time-evolve the initial state

| (tf )i = U(tf , t0) | (t0)i . (3.27)

In principle, this is the end of the story, but it is practically impossible

to do any calculations without developing some technology. The reason is

because when we describe the field in terms of its spatial configurations '(x),

the Hamiltonian, which contains spatial derivatives of the field, will couple

the degree of freedom at x to all the others x0 in a neighborhood of x. Time-

evolution will entangle these degrees of freedom no matter what state we start

with, and the description becomes very messy.

Just like in finite-dimensional quantum mechanics, it is therefore much

more practical to find a description in terms of non-interacting degrees of free-

dom. Instead of talking about things in terms of local measurements of the

field amplitude '(x) at x, we can alternatively talk about non-local things

like the amplitudes '(p) for the Fourier coe�cients of these field amplitudes.

In other words, we can try to find a basis for the space of field configurations

such that time-evolution does not mix di↵erent basis components. Concretely,

we can look for a set of complex-valued functions u↵ = u↵(x) on space. De-

manding that these functions are complete and orthonormal

�(x� x0) =

Z
d↵ u⇤

↵(x)u↵(x
0), �(↵� ↵0) =

Z
d3x u⇤

↵(x)u↵0(x), (3.28)

we can use them to express any field configuration as some set of complex

coe�cients

'(x) =

Z
d↵ u↵(x)'(↵). (3.29)
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Clearly the data '(x) and '(↵) are equivalent; specifying one specifies the

other. Therefore we can describe field space using either variable, so that for

example the integral measure can be written schematically asZ
D' =

Z
R

Y
x

d'(x) =

Z
C

Y
↵

d'(↵). (3.30)

The word schematic refers to the fact that the coe�cients '(↵) are constrained

by the requirement that '(x) is real, so one has to also include some delta-

function in the integral measure to handle this, as we will see in examples. In

the quantum theory, we can likewise expand the field and momentum operators

'̂(x) =

Z
d↵ u↵(x)'̂(↵), ⇡̂(x) =

Z
d↵ u↵(x)⇡̂(↵), (3.31)

and then we can impose the canonical commutation relations (3.23) in ↵-

space by a simple relation like ['̂(↵), ⇡̂(↵0)] ⇠ �(↵ � ↵0) as a consequence of

the completeness relation (3.28). The exact form of this is a bit di↵erent in

di↵erent coordinate systems as we will see below, but the physical point is that

completeness of the mode functions gives us canonical commutation relations

in ↵-space that do not entangle ↵ 6= ↵0.

In this thesis we will hereafter focus on an important case in which it

is possible to explicitly find good sets of u↵ by making use of the frames of

reference for observers constructed in the first chapter. This is the case in

which the Hamiltonian is quadratic in the field and its momentum, i.e. “free”

field theory. In flat spacetime we will really mean a free field, but in what

follows we will consider the field coupled to a gravitational field. In either
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case, one can write the time evolution operator by first finding some kind of

basis in which the field looks like a set of decoupled systems, and then apply

the discussion from the end of the previous section. This situation is simple

enough that we can give concrete calculations, but general enough that we

can capture the complications introduced by considering causal structure and

observers.

Thus, we begin by considering a real scalar field of mass m in ordinary

4-dimensional flat spacetime. We use the standard frame coordinates xµ =

(t, x, y, z) associated to any inertial observer O. One starts from the action

S =

Z
dt L =

Z
dtd3x


�1

2
⌘µ⌫@µ'@⌫'� 1

2
m2'2 � V (')

�
(3.32)

from which one derives the conjugate momentum ⇡ = @L/@'̇ = '̇ and obtains

the Hamiltonian

H =

Z
d3x

1

2

⇥
⇡2 + �ij@i'@j'+m2'2

⇤
+ V ('). (3.33)

The free theory is defined by the statement that V ⌘ 0.

Since we are in flat space, the choice of the functions u↵ is obvious: we

can exploit translation symmetry and consider plane waves. To be precise,

consider the set of complex-valued functions of the spatial coordinates with

fixed time argument, and define on these the standard inner product

(u, v) :=

Z
d3x u⇤(x)v(x). (3.34)

Now, the functions

u
p

(x) =
eip·x

(2⇡)3/2
, p 2 R3 (3.35)
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form a complete orthonormal set in the inner product (3.34), that is they

satisfy

�(p� p0) = (u
p

, u
p

0), �(x� x0) =

Z
d3p u⇤

p

(x)u
p

(x0). (3.36)

Using the completeness relation (the second equation), we may express any

spatial functions, in particular the field and momentum operators, as expan-

sions in the u
p

, that is

'̂(x) =

Z
d3p u

p

(x)'̂(p), ⇡̂(x) =

Z
d3p u

p

(x)⇡̂(p). (3.37)

In the quantum theory, the coe�cients '̂(p), ⇡̂(p) are likewise operators

on Hilbert space. Using the fact that u⇤
p

= u�p

, we see that reality of the

field operator requires '̂†(p) = '̂(�p) and similarly ⇡̂†(p) = ⇡̂(�p). From

(3.36) and (3.37) one then easily verifies that we can satisfy the canonical

commutation relations (3.23) by demanding that

['̂(p), ⇡̂(p0)] = i�(p+ p0). (3.38)

The canonical commutation relations (3.38) are represented on wavefunctionals

as

'̂(p) [', t] = '(p) [', t], ⇡̂(p) [', t] = �i
� [', t]

�'†(p)
. (3.39)

Plugging the expansions (3.37) into the Hamiltonian operator, and us-

ing the orthonormality condition (3.36), one obtains

H =
1

2

Z
d3p ⇡†(p)⇡(p) + !2

p

'†(p)'(p) +Hint (3.40)
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where the frequencies are

!2
p

= p2 +m2 (3.41)

and the interaction Hamiltonian

Hint =

Z
d3x V (') (3.42)

can likewise be evaluated in momentum space. One verifies easily that this

operator is Hermitian. We can now use this expression to write the system as

a set of decoupled subsystems.

Setting V = 0, we see that we have decomposed the system into a set

of decoupled degrees of freedom, each of which has a Hamiltonian

H
p

=
1

2

⇥
⇡†(p)⇡(p) + !2

p

'†(p)'(p)
⇤
. (3.43)

corresponding to a harmonic oscillator of unit mass and frequency !
p

. Fol-

lowing the discussion in the previous section, we now want to diagonalize each

subspace into its energy eigenstates

H =
O
p

H
p

, H
p

= span {|n
p

i} , H
p

|n
p

i = Enp |np

i . (3.44)

Of course, one can easily diagonalize the subspace Hamiltonians in the usual

way: define the creation and annihilation operators by

'
p

=

s
1

2!
p

h
a
p

+ a†�p

i
, ⇡

p

= �i

r
!
p

2

h
a
p

� a†�p

i
. (3.45)

The canonical commutation relations then imply that we needh
a
p

, a†
p

0

i
= �(p� p0) (3.46)
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with the other commutators vanishing. Using this and working under the
R
d3p

in the full Hamiltonian, one can easily show that we can write the subspace

Hamiltonians as

H
p

= !
p

�
a†
p

a
p

+ a
p

a†
p

�
. (3.47)

Up to an infinite c-number which we ignore as usual, one thus obtains the

spectrum

Enp = n
p

!
p

, n
p

= 0, 1, 2, . . . , (3.48)

corresponding to the basis states of each H
p

, defined by

|n
p

i =
�
a†
p

�npp
n
p

!
|0

p

i , a
p

|0
p

i = 0. (3.49)

Finally, we can write out the time-evolution operator. The subspace

bases can be tensored together to form a basis for the full Hilbert space of the

field. Indeed we have a complete basis for H formed by product states

|n
p

n
p

0 · · ·i = |n
p

i ⌦ |n
p

0i ⌦ · · · . (3.50)

We can then immediately apply the discussion above: we may write the time-

evolution operator in the basis (3.50) as we did in (3.14),

| (tf )i = U(tf , t0) | (t0)i =
X

npnp0 ···
cnpnp0 ···(t0)e

�i
R
d3p np!p(tf�t0) |n

p

n
p

0 · · ·i .

(3.51)

Finally, note that one can do things in the wavefunctional language, a

method that turns out to be useful for some generalizations to gravitational

problems, especially one without time-translation symmetry. We can express
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wavefunctionals in either position or momentum space. For example, we will

often be interested in product states

 ['] = h'| i =
Y
p

 
p

('(p)) = exp

⇢Z
d3p ln 

p

('(p))

�
. (3.52)

In such a state, the functional Schrödinger equation is just an infinite set of

linear single-mode equations

H
p

 
p

= i@t p

. (3.53)

We will be particularly interested in Gaussian states, where each mode wave-

function  
p

is a Gaussian,

 ['] = N exp

⇢
�1

2

Z
d3p F (p)'†(p)'(p)

�
, N =

Y
p

s
⇡3

ReF (p)
. (3.54)

It is clear that the Hamiltonian is a positive operator, and sinceH |00 · · ·i =

0 we see that the vacuum is just the state with zero quanta in each mode. It

is instructive to work out the wavefunctional of this state. We know that, for

all p,

0 = h'|a
p

|0i (3.55)

which says that

0 =


!
p

'(p) +
�

�'†(p)

�
 0[']. (3.56)

Since |0i is a product state we have the product wavefunctional

 0['] =
Y
p

 
p

('(p),'†(p)). (3.57)
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Note that within this product we have both the wavefunction for p and �p.

Thus, one has the solution

 
p

('(p),'†(p)) = N
p

exp
�
�!

p

'†(p)'(p)/2
 
, (3.58)

for each mode’s wavefunction. The total wavefunctional is then a Gaussian

product like (3.54),

 0['] = N exp

⇢
�1

2

Z
d3p !

p

'†(p)'(p)

�
. (3.59)

Using this technology, one can compute all of the usual quantities, built

out of n-point functions of the field operators. One usually is trying to describe

a situation where we think we know the initial state | (t0)i of the field, and

are interested in the expectation value of some fields at a later time tf > t0,

or in computing the propbability for some initial state to transition to some

final state.

As an example of the first case, consider the vacuum | (t0)i = |0i.

Since this is an eigenstate of H, the two-point function is time-independent,

and we find easily

h0|'(x)'(x0)|0i =
Z

d3pd3p0 u
p

(x)u
p

0(x0) h0|'(p)'(p0)|0i

=

Z
d3p

(2⇡)3
eip·(x�x

0)

2!
p

.
(3.60)

Here we used (3.37), (3.45), (3.46), (3.49), as well as the explicit form of the

modes (3.35). One can also get this answer from the wavefunctionals: a little

work shows that for a Gaussian state like (3.54), one has

h |'(x)'(x0)| i =
Z

d3p

(2⇡)3
eip·(x�x

0)

2ReF (p)
, (3.61)
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and we know from the above that the ground state of flat spacetime has

F (p) = !
p

.

Less trivially, we can compute the propagator. One often sees this

written as the expectation value of two field operators with time arguments;

this is a Heisenberg picture statement. Indeed in our language, for example,

the Wightmann function is

G (x, x
0) = h |'(x, t)'(x0, t0)| i

= h (t0)|U †(t, t0)'(x)U(t, t0)U
†(t0, t0)'(x

0)U(t0, t0)| (t0)i
(3.62)

where here the first line is in the Heisenberg picture while the second line is in

the Schrödinger picture. In the vacuum | i = |0i, this is a reasonably simple

quantity. The U operators on the edges are trivial, and we get, using similar

manipulations as in the previous calculation,

G0(x, x
0) =

Z
d3pd3p0 u

p

(x)u
p

0(x0) h0|'(p)U(t, t0)U
†(t0, t0)'(p

0)|0i

=

Z
d3p

(2⇡)3
eip·(x�x

0)�i!p(t�t0)

2
p
|p|2 +m2

.
(3.63)

One can compare this to, say, eq. (2.50) of Peskin and Schroeder.

3.1.3 Unitary time-evolution between spatial slices

Having gone through all of this work in flat spacetime, it is straightfor-

ward to describe the usual generalization to curved spacetimes.6 One considers

6This formulation is nicely reviewed in the classic textbook of Birrell and Davies,(70)
who work in the Heisenberg picture. An elegant series of papers by Hill, Freese and Mueller
reproduces many of the same results in the Schrödinger picture,(74; 75; 76) and I learned
much from their work, although unfortunately I only found their papers about a week before
this document was due to my committee.
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a spacetime (M, g) with a fixed metric g = gµ⌫dxµdx⌫ , and we assume that we

can find some foliation M = Rt ⇥ ⌃ where the ⌃ are spacelike slices, repre-

senting “space at time t” in the time coordinate t, so that we can use the same

spatial coordinates x on each slice. The Schrödinger picture is constructed by

looking at complex superpositions of field eigenstates |'i at each time, so that

again the Hilbert spaces are all identical Ht ⌘ H. Then time evolution from

t0 to tf is encoded by a unitary map U : H ! H where the first copy contains

the state on the spatial slice at t0 and the second contains the state at tf .

While this construction is a completely obvious generalization, it is not

so clear that it is physically reasonable. Indeed, as described above, in a general

spacetime, the full extent of these sptial sections may not be causally accessible

to a given observer or, more importantly, to any observer. In other words, no

one can actually check if the sum of the probabilities of the “measurements”

described by these Hilbert spaces actually does sum to one. More importantly,

this formulation implies that time evolution is globally reversible. Regardless,

this formalism has been successful in the theory of fluctuations in the early

universe, so we develop it here in order to facilitate comparison to a more

observer-centric approach.

Suppose the classical dynamics are described by a classical action

S['] =

Z
dt L[', @µ'] =

Z
dtd3x

p
�g L('(x), @µ'(x)),

Define the canonical momenta

⇡ =
p
�g

@L

@'̇
. (3.64)
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The classical Hamiltonian is then the usual functional

H['] =

Z
d3x

⇥
'̇(x)⇡(x)�

p
�gL('(x), ⇡(x))

⇤
(3.65)

where as always we express the integrand in terms of ', ⇡, and their spatial

derivatives only. Note that now the Hamiltonian may have explicit time-

dependence because of metric factors.

Regardless of the time-dependence in the Hamiltonian, we can still work

in the Schrödinger picture. If the Hamiltonian is time-dependent, the time-

dependence of the system will be mixed between the wavefunctionals and the

Hamiltonian operator itself. To quantize the theory, we again write the field

operators as '̂(x), with no time-dependence: this is analogous to the fact that

the position operator in ordinary quantum mechanics is still time-independent

even if we have a time-dependent Hamiltonian.

Fix any time t. We again take the Hilbert space Ht for the field at time

t to be the complex span over the set of field eigenstates

'̂(x) |'i = '(x) |'i , (3.66)

just as we did in flat spacetime. The rest of the formalism in position space

goes through identically as it did in flat spacetime. In particular, we have the

Hamiltonian operator defined as usual

Ĥ(t) = H['̂, ⇡̂, t] =

Z
d3x H('̂(x), ⇡̂(x), t). (3.67)

Here we have allowed for the explicit time-dependence induced by the metric.

This Hamiltonian operator propagates the states from space at one time t0 to
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another time tf via the usual time-evolution operator

U(tf , t0) = T exp

⇢
�i

Z tf

t0

dt0 H(t0)

�
. (3.68)

At this stage one would again like to diagonalize the Hamiltonian and

write the field as a bunch of decoupled subsystems. The problem is that in

general this will not be achieved by a Fourier transform. Here I will present the

correct procedure in a pair of general circumstances that one often encounters.

The first is a static metric, that is, one in which the metric coe�cients do

not depend on the time coordinate. The second is a spatially homogeneous

metric: one in which the metric coe�cients do not depend on the spatial

coordinates. We begin with the static case, which is conceptually very similar

to flat spacetime, since everything is time-translation invariant. In both cases,

the action for a free scalar field is the usual covariant generalization of (3.32)

S =

Z
dt L =

Z
dtd3x

p
�g


�1

2
gµ⌫@µ'@⌫'� 1

2
m2'2

�
. (3.69)

Static metric

Consider a metric of the form

ds2 = �N2(x)dt2 +Gij(x)dx
idxj (3.70)

for concreteness, where the coe�cients do not depend on the time coordinate

t. One has the canonical momenta ⇡ = �L
�'̇

=
p
G

N
'̇, from which we get the

time-independent Hamiltonian

H =
1

2

Z
d3x

Np
G
⇡2 +N

p
G
⇥
Gij@i'@j'+m2'2

⇤
. (3.71)
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We would like to diagonalize this Hamiltonian as we did in flat space-

time. In other words, we want to find an expansion of the field operators in

terms of some mode functions u↵,

'̂(x) =

Z
d↵ u↵(x)'̂(↵), ⇡̂(x) = f(x)

Z
d↵ u↵(x)⇡̂(↵), (3.72)

where we leave the choice of the function f(x) open for the moment. Reality

of the field operator means that we need

u↵(x)'̂(↵) = u⇤
↵(x)'̂

†(↵), u↵(x)⇡̂(↵) = u⇤
↵(x)⇡̂

†(↵), (3.73)

a condition which looks somewhat di↵erent in di↵erent coordinate systems.

We will write this schematically as we did in the flat space case ↵ = p, that is

u↵(x) = u⇤
�↵(x), '(↵) = '†(�↵), ⇡(↵) = ⇡†(�↵), (3.74)

but one should keep in mind that the index ↵ may not literally behave this

way. The canonical commutation relations can be guaranteed if the u↵ are

complete in the sense that

f(x)

Z
d↵ u⇤

↵(x)u↵(x
0) = �(x� x0), (3.75)

where this delta function means a coordinate delta function �(x1 � x01)�(x2 �

x02) · · · , and if we assume that

['(↵), ⇡(↵0)] = �(↵ + ↵0). (3.76)

We can easily work out the properties required of the u↵ in order to

get a diagonal Hamiltonian. Inserting (3.72) into (3.71) and considering the
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reality condition on the field, we see that we can get a Hamiltonian acting

diagonally in ↵ ifZ
d3x f

Np
G
u↵u↵0 / �(↵ + ↵0)Z

d3x N
p
G
⇥
Gij@iu↵@ju↵0 +m2u↵u↵0

⇤
/ �(↵ + ↵0).

(3.77)

It is fairly straightforward to satisfy these conditions in two important cases,

the only ones we need in this work: if the metric is homogeneous or if the

metric is separable, for example axially or spherically symmetric. The latter

is treated in the next section. Here I will treat the spherically symmetric

case; when we come to the problem of a uniformly accelerated observer in

flat spacetime, whose frame has axial symmetry, we will see that things are a

straightforward generalization of this case.

Any static and spherically symmetric metric can be written

ds2 = �N2(r)dt2 + dr2 + A2(r)d!2. (3.78)

If there is a coe�cient in front of the dr term one can always rescale r to remove

it. Note that the simplest example of such a metric is just flat spacetime in

spherical coordinates; appendix B describes the quantum theory there and

serves as a good warmup or check on the rest of this section.

With a metric of the form (3.78), we can take the modes to be spheri-

cal harmonics multiplied by radial functions, the properties of which we now

derive. Indeed, we may perform an integration by parts along the radial and

angular directions in the Hamiltonian, and obtain

H =
1

2

Z
drd✓d�NA2 sin ✓


⇡2

A4 sin2 ✓
� 'D'

NA2

�
, (3.79)
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where we wrote the radial di↵erential operator

D = @r
�
NA2@r

�
�NL2 �NA2m2 (3.80)

in Sturm-Liouville form D = @(P@)+Q, the utility of which will become clear

in short order.7

Define the weight function

W = W (r) =
A2(r)

N(r)
, (3.81)

and the inner product on any two functions u = u(r), v = v(r) by

(u, v) =

Z
dr W (r)u⇤(r)v(r). (3.82)

If we now impose that the radial functions vp` satisfy the Sturm-Liouville

equation

Dvp`(r) = �W (r)!2
p`vp`(r) (3.83)

subject to some self-adjoint boundary conditions, we are guaranteed of the

existence of a complete and orthonormal set of radial functions, that is a set

of vp` satisfying

�(p� p0) =

Z
dr W (r)v⇤p`(r)vp0`(r) = (vp`, vp0`)

�(r � r0) =

Z
dp W (r0)v⇤p`(r)vp`(r

0).
(3.84)

The second condition can be deduced from the first by assuming that any

function g(r) has an expansion g(r) =
R
dp g(p)vp`(r), with the coe�cients

7See for example (77) for a review on Sturm-Liouville theory.
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given by the usual Fourier trick g(p) = (vp`, g). Since this is a radial problem

one finds that the radial modes are non-degenerate, that is there is one mode

for each value of !p`, and furthermore the functions may be taken to be real.

To get a feel for self-adjoint boundary conditions, note that from (3.83) and

its conjugate we have that

�
!2
p` � !2

p0`

� Z
dr Wv⇤p`vp0` = v⇤p`@rvp0` � vp0`@rv

⇤
p` (3.85)

as an antiderivative. One can then evaluate this at the limits of the radial

coordinate r; self-adjoint boundary conditions are those for which this expres-

sion reduces to the orthonormality condition in (3.84). We will get a lot of

mileage from this technique in the examples that follow.

Having found such a complete set of modes, we may expand the field

operators as

'(x) =

Z
dp

X
`m

vp`(r)Y
m
` (✓,�)'(p, `,m)

⇡(x) = W (r) sin ✓

Z
dp

X
`m

vp`(r)Y
m
` (✓,�)⇡(p, `,m)

(3.86)

Using the conjugation properties of spherical harmonics (Y m
` )⇤ = (�1)mY �m

` ,

we see that reality of the field operator requires

'(p, `,m) = (�1)m'†(p, `,�m), ⇡(p, `,m) = (�1)m⇡†(p, `,�m). (3.87)

One can verify that the canonical commutation relations are then satisfied if

and only if we take

['(p, `,m), ⇡(p0, `0,m0)] = (�1)m�(p� p0)�``0�m,�m0 , (3.88)

106



by virtue of the completeness relations (3.84). We also obtain a nice, diagonal

Hamiltonian:

H =
1

2

Z
dp

X
`m

⇡†(p, `,m)⇡(p, `,m) + !2
p`'

†(p, `,m)'(p, `,m). (3.89)

Thus, once we have imposed the appropriate boundary conditions, we

are formally done. We have reduced the system to a de-coupled set of oscilla-

tors labeled by ↵ = {p, `,m}, all of unit mass but with frequencies !↵. Thus

we can again write down a product basis

|n↵n↵0 · · ·i = |n↵i ⌦ |n↵0i ⌦ · · · . (3.90)

The Hamiltonian has already been decomposed H =
R
d↵ H↵ and we have

the spectrum

En↵ = n↵!↵, n↵ = 0, 1, 2, . . . . (3.91)

The Hamiltonian is a positive operator, and one has a well-defined vacuum

state, namely the state where all the n↵ = 0. This is a Gaussian in ↵-space,

 0['] = N exp

⇢
�1

2

Z
d↵ !↵'

†(↵)'(↵)

�
, N =

Y
↵

s
⇡3

2!↵
. (3.92)

One can write down the time-evolution operator exactly as in (3.14).

We will later be interested in the two-point function at equal times,

evaluated in the vacuum. Defining creation and annihilation operators pre-

cisely as in flat spacetime or just computing from the wavefunctional, one
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obtains

h0|'(x)'(x0)|0i =
Z

d↵ d↵0 u↵(x)u↵0(x0) h0|'(↵)'(↵0)|0i

=

Z
dp

X
`m

1

2!p`

vp`(r)vp`(r
0)Y m⇤

` (✓,�)Y m
` (✓0,�0).

(3.93)

One could likewise work out the propagator or whatever other quantity one is

interested in by appealing to the analogy with flat spacetime.

Spatially homogeneous metric

Now, let us consider a metric in which the metric coe�cients do not

depend on the spatial coordinates x but may depend on t. Such a metric is

called homogeneous. We can work with the metric in the same basic form as

before, (3.70), except with the coe�cients depending only on t rather than x.

That is

ds2 = �N2(t)dt2 +Gij(t)dx
idxj. (3.94)

One could always rescale the time coordinate N(t)dt = dt0, so without loss

of generality we can study the case N = 1. While true, it’s perfectly easy to

keep the N explicit, and this is useful for various computations, for example

involving conformal time in cosmology.

While the time-dependence of the metric introduces complications,

there is a high degree of symmetry on the spatial slices, enough to perform a

simple quantization. Indeed, one has translational symmetry xi 7! xi + �xi

along each direction. The way in which the three translation Killing fields

close to form an algebra has been classified long ago by Bianchi, leading to the
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so-called Bianch spacetimes of type I-IX. The simplest example is of course

the isotropic case Gij / �ij, of which the FRW metric is a special case; more

general Bianchi models which allow for spatial anisotropy have also been con-

sidered as models of the early universe.

The action for a free field is the same as always. Doing an integration

by parts on the spatial slices we may write the Hamiltonian, which now has

time-dependent coe�cients, as

H =
1

2

Z
d3x

⇥
W⇡2 � 'D'

⇤
, W = W (t) =

N(t)p
G(t)

, (3.95)

where now the di↵erential operator

D = @i
⇣
N
p
GGij@j

⌘
�N

p
Gm2 (3.96)

depends only on the time coordinate. One can therefore diagonalize the Hamil-

tonian just like in flat spacetime, by introducing Fourier modes. One should

be precise about how this works: we put

'̂(x) =

Z
d3p u

p

(x)'̂(p), ⇡̂(x) =

Z
d3p u

p

(x)⇡̂(p), (3.97)

with

u
p

(x) =
e�ip·x

(2⇡)3/2
. (3.98)

It is important to understand that these are “coordinate” Fourier modes, i.e.

p ·x = �ijpixj, so we should raise and lower their indices with a delta function

pi = �ijpj. 8 Therefore, these modes satisfy orthonormality and completeness

8This is somewhat di↵erent from the setup used in the literature, but seems to me to be
much more convenient.
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as coordinate functions, that is they satisfy (3.36), viz.

�(p� p0) =

Z
d3x u⇤

p

(x)u
p

0(x), �(x� x0) =

Z
d3p u⇤

p

(x)u
p

(x0). (3.99)

One verifies easily that we get the canonical commutation relations on '(x), ⇡(x)

by imposing ['(p), ⇡(p0)] = i�(p+ p0) as before.

Going through the same machinery we have used before, one works out

that the Hamiltonian decomposes into a sum

H(t) =

Z
d3p H

p

(t), H
p

(t) =
1

2


⇡†(p)⇡(p)

M(t)
+M(t)!2

p

(t)'†(p)'(p)

�
,

(3.100)

where now we have a set of decoupled oscillators, each with the same time-

dependent mass

M(t) =
1

W (t)
=

p
G(t)

N(t)
(3.101)

but with p- and t-dependent frequency

!2
p

(t) = N2(t)
�
Gij(t)pipj +m2

�
. (3.102)

Despite the time-dependence of the Hamiltonian, one can still explic-

itly write the time-evolution operator of the field, expressed in the momen-

tum basis. The reason is because the time-evolution operator for a generally

time-dependent harmonic oscillator is known. For completeness, I include this

expression in appendix C, but in the examples that follow it will be much more

straightforward to just solve the Schrödinger equation directly. Indeed, in a

product state

 [', t] =
Y
p

 
p

('(p),'†(p), t) (3.103)
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one obtains easily that for all p,

i@t = H(t) =) i@t p

= H
p

(t) 
p

. (3.104)
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3.2 On living with others

In this section I study how to go from a global description down to

the observations of a particular observer, and how to compare observations

made by a pair of di↵erent observers. I emphasize that these are generally two

di↵erent classes of problems, with neither containing the other.

3.2.1 From global to local

Let us suppose that we have a global description in the sense of sec-

tion 3.1.3, i.e. some field theory described by time evolution between slices

⌃t of constant time t. Label the spatial coordinates of these slices by y =

(y1, y2, . . .). We assume that have found some complete orthonormal basis

ua(y) for functions on a given slice,

�(a� a0) =

Z
⌃t

d3y u⇤
a(y)ua0(y), �(y � y0) =

Z
da u⇤

a(y)ua(y
0). (3.105)

We may expand the field operator as usual in terms of these,

'(y) =

Z
da ua(y)'(a). (3.106)

Now, we want to consider an observer O living in this spacetime and

probing a state for which we have some a priori description in terms of field

configurations on the global spatial slices ⌃t. The observer has a set of basis

functions that she can use to describe any function on his frame’s spatial

surfaces ⌃⌧ of constant frame time ⌧ . That is, she has a set of functions u↵

satisfying

�(↵� ↵0) =

Z
⌃⌧

d3x u⇤
↵(x)u↵0(x), �(x� x0) =

Z
d↵ u⇤

↵(x)u↵(x
0), (3.107)
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where x are the coordinates on his frame’s slices ⌃⌧ .

For simplicity, let’s assume that there is some particular time ⌧0 and

global time t0 such that the observer’s spatial slice is entirely contained in

some particular slice of the global slicing, i.e. ⌃O = ⌃⌧0 ⇢ ⌃t0 . This means

that we have a coordinate transformation on the intersection, that is some

relation y = y(x), invertible and smooth but defined only on the part of space

at t0 that lies within the frame of O. We can break up the global slice into

⌃t0 = ⌃O [ ⌃O where the second factor just means the compliment of ⌃O as

a point set, i.e. the part of space at t0 lying outside the frame of O. We put

some other coordinates x on this region, so that we also have a coordinate

transformation y = y(x), and some other set of modes u↵ which as usual

satisfy

�(↵� ↵0) =

Z
⌃O

d3x u⇤
↵(x)u↵0(x), �(x� x0) =

Z
d↵ u⇤

↵(x)u↵(x
0). (3.108)

We can take the functions u↵ and u↵ to be extended globally to the whole of

⌃t0 by just setting them to zero outside of A or Â, respectively, and we will

do so in the following.

This geometric splitting allows us to decompose the global Hilbert space

into two pieces (at this time),

Ht = HO ⌦HO. (3.109)

Here the first factor contains data that is accessible to O and the second factor

contains the data that is not. Concretely, we write the field operator as a sum
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of two terms

'(y) = 'O(y) + '
O
(y), (3.110)

where the two terms only have support in ⌃O or ⌃O respectively. To be precise

we write

'O(y) = ⇥⌃O
(y)'(y), '

O
(y) = ⇥⌃O

(y)'(y), (3.111)

where ⇥R is the characteristic function on the region R, equal to one if y 2 A

and zero otherwise. Then the two Hilbert space factors are the spans of field

eigenstates in the two regions,

HO = span {|'Oi} , HO = span
n
|'

O
i
o
. (3.112)

Notice that a global state will generally contain entanglement between these

two pieces.

The usual quantum-mechanical “observables” of the theory are defined

in the global sense, as Hermitian operators A : Ht ! Ht. As repeatedly em-

phasized in this work, it is generally possible that a given observer O cannot

actually set up any kind of apparatus capable of probing the entire operator,

since for example she could not receive light signals from such an appara-

tus from the region ⌃O. However, by construction, she can always measure

operators AO : HO ! HO at least in principle.

The basic point is that one can go from the global description down to

a description according to the observer by a projection, but not necessarily the

other way around. That is to say, there is more information globally than can

be probed by the observer. At the level of functions on slices this is obvious.
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The ua are a complete set on the whole slice, so we can expand any function

on either ⌃O or ⌃O in terms of them; in particular

u↵(x) =

Z
da P↵aua(y(x)), u↵(x) =

Z
da P↵aua(y(x)). (3.113)

Using completeness on ⌃O and ⌃O one has that the coe�cients here are

P↵a =

Z
⌃O

d3x u⇤
au↵, P↵a =

Z
⌃O

d3x u⇤
au↵. (3.114)

Having split the fields as in (3.110), we can then expand each term as

'O(x) =

Z
d↵ u↵(x)'O(↵), '

O
(x) =

Z
d↵ u↵(x)'O

(↵). (3.115)

Comparing (3.106) and (3.110) and taking some inner products, one obtains

an expression for the field operators '(a) in terms of the fields operators in

⌃O,⌃O:

'(a) =

Z
d↵ P ⇤

↵a'O(↵) +

Z
d↵ P ⇤

↵a'O
(↵). (3.116)

This last equation allows one to very e�ciently translate global wave-

functionals into a description in terms of the things O can and cannot see.

The way to do it is to simply insert (3.116) into a wavefunctional in terms of

the global coe�cients '(a) and see what comes out. For example, suppose one

has a product wavefunctional in the global description

 ['] =
Y
a

 a('(a)). (3.117)

Then on insertion of (3.116), we have a product over the global index a,

each term of which contains a sum over both the observer’s index ↵ and the
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unobservable index ↵. This means that, generically, the state as expressed

with respect to O is not a product state in his ↵ basis. It also means that the

state contains entanglement between ⌃O and ⌃O, i.e. things that O can see

are entangled with things she cannot.

Clearly, we would also like to have some description for O which does

not refer to the things she cannot see.9 The standard procedure is to “trace

out” the states in HO. This has the interpretation of an average over con-

ditional probabilities for measurements involving HO. Formally, suppose the

field’s global state is a density matrix

⇢ : Ht ! Ht. (3.118)

Then there exists a unique operator ⇢O : HO ! HO, called the reduced density

matrix for O, such that for any of O’s observables AO : HO ! HO, one has

hAOi = trHO
⇢OAO = trHt ⇢AO ⌦ 1HO

. (3.119)

One can compute the elements of the reduced density matrix for O by a trace

over HO. Let |ni ⌦ |ni denote some complete orthonormal basis on Ht =

9The generality of this discussion bears remarking. The idea of tracing out degrees of
freedom makes seems to make sense when one is tracing out things behind an actual event
horizon, as in the examples in this thesis, although it does not seem to make sense for
example if the observer is only around for a finite amount of time. Even in the good cases,
the precise formulation given here about observerables “for O” may need to be refined:
for example, it is not clear if one can take a correlation function with arguments in some
observer’s causal diamond to only act “on HO” in general. Thus one should take the
following with a grain of salt; it is given only to motivate the usual tracing-out procedure,
but the general formulation is the subject of current work. I thank Jacques Distler for
discussions on these points.
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HO ⌦HO, then one has the global density matrix

⇢ =
X

nmnm

⇢nn,mm |ni |ni hm| hm| , (3.120)

and the reduced density matrix for O is

⇢O = trHO
⇢, [⇢O]nm =

X
n

⇢nn,mn. (3.121)

In the wavefunctional language, we can use the field-space kets |'Oi , |'O
i

as the bases on each factor. For example, suppose the global state is a pure

product state like (3.117). Then the reduced density matrix for O has elements

⇢O('O,'
0
O) =

Z
C

Y
↵

d'
O
(↵) ⇤['O,'O

] ['0
O,'O

]. (3.122)

This density matrix is not diagonal in field space, that is there are non-zero

elements which connect a configuration 'O with other configurations '0
O in the

frame of O.

3.2.2 Comparing observers

Consider a pair of observers O and O. How can these observers compare

their observations? The simplest consideration one needs to make is that they

may well be measuring things with respect to di↵erent bases. They may also

have causal access to di↵erent regions of spacetime. The general problem is

very interesting and somewhat beyond the scope of this work. However, it is

possible to give a nice answer in the case that these observers can select some

instant in time such that they can synchronize their measurement apparatuses
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in some region at some particular time, because in this case one can apply the

formalism of the preceeding section.

The simplest case is when there is some time ⌧0 = ⌧ 0 when the spatial

slices of the frames of both observers cover an identical region of spacetime,

⌃O = ⌃O. In this case these observers can actually compare their measurement

apparatus everywhere, and we only need to incorporate the fact that they will

generally be using two di↵erent sets of basis functions to describe field states.

In particular, at this time we have a coordinate transformation x(x) between

the spatial frame coordinates of O and O. Given some system at hand, both

observers will have set up measuring devices, which for a free quantum field

just means that they each have a complete set of modes. Let O use

'(x) =

Z
d↵ u↵(x)'(↵), (3.123)

while his friend O has used some di↵erent expansion,

'(x) =

Z
d↵ u↵(x)'(↵). (3.124)

Both sets of modes satisfy the usual orthonormality and completeness relations

�(↵� ↵0) =

Z
d3x u⇤

↵(x)u↵0(x), �(x� x0) =

Z
d↵ u⇤

↵(x)u↵(x
0)

�(↵� ↵0) =

Z
d3x u⇤

↵(x)u↵0(x), �(x� x0) =

Z
d↵ u⇤

↵(x)u↵(x
0).

(3.125)

Since both of these sets are complete, we can write one in terms of the other,

say

u↵(x) =

Z
d↵ U↵↵u↵(x(x)). (3.126)
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Clearly one can take inner products to obtain the coe�cients

U↵↵ =

Z
d3x u⇤

↵(x(x))u↵(x). (3.127)

Since the observers can synchronize their apparatuses everywhere, one

should expect that there is a unitary map that encodes this synchronization.

Indeed, the notation U↵↵ is a reminder that this is precisely such a map. Here

unitarity means that Z
d↵ U↵↵U

⇤
↵0↵ = �(↵� ↵0), (3.128)

and we can invert all these expressions by taking the usual Hermitian conju-

gates. Since the field operators are scalars '(x) = '(x(x)), we of course also

need to rotate the field basis

'(↵) =

Z
d↵ U⇤

↵↵'(↵). (3.129)

Much as in the global case described in the previous section, this expression

allows one to go between the descriptions of O and O by simply inserting this

(or its counterpart for '(↵) into wavefunctionals.

Now, the two di↵erent observers will generally have two distinct notions

of time, ⌧ and ⌧ , and therefore will construct two di↵erent time evolution

operators U and U using two di↵erent Hamiltonians H and H. However, since

we have assumed that they can synchronize their clocks across their entire

frames at ⌧ = ⌧ = 0, they can also compare their field expansions directly

at this time, and then use this information to compare any of their other
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observations by making use of their respective time-evolution operators. We

will see how this simple formalism works out section 3.3.1, where we will use

it to demonstrate the Unruh e↵ect.

We will sometimes meet a slightly more general situation than the one

just described above. It may be that at ⌧ = ⌧ = 0, one observer has access to

only some subset of space accessible to the other; without loss of generality we

can assume that it is O who can only see part of O’s spatial slice, ⌃O ( ⌃O.

In this case, we can break up space into two regions

⌃O = ⌃O [ ⌃O, (3.130)

and directly apply the discussion from the previous section. Specifically, we

consider the picture according to O as “global”, although it should be empha-

sized that O himself may only be accessing part of the global description. In

any case, we can use x = y for the “global” coordinates, and we will need to

find some set of modes u↵(x) on the part of space accessible to O but not to

O, that is ⌃O ⇢ ⌃O. All of the comments from the end of section 3.2.1 then

apply. The degrees of freedom accessible to O will generically be correlated

with degrees of freedom unaccessible to O, and one can form a reduced den-

sity matrix ⇢O = trHO
⇢O formed from the density matrix for O, which may

in turn have been constructed from another density matrix ⇢ in some global

description.
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3.3 Examples

This section gives a pair of examples of the formalism from the rest

of this chapter. First I study the observations of an inertial observer and

his uniformly accelerated friend in flat spacetime. I recover the Unruh e↵ect:

the uniformly accelerated observer views the global Minkowski vacuum as a

thermal ensemble. I then turn to the description of an inflating FRW universe

in terms of the observations of some particular inertial (co-moving) observer

living there.

Many of the results in what follows are known but have been reformu-

lated here with an explicit focus on observers. The Rindler observer and related

Unruh e↵ect are famous and old results. Besides Unruh’s original paper (49),

his paper with Fulling (78) inspired much of the discussion of boundary con-

ditions presented here. Crispino, Higuchi, and Matsas (79) have given a nice

review of the Unruh e↵ect, and as mentioned earlier Hill, Freese and Mueller

(74) gave an exposition of this in the Schrödinger picture. The general infla-

tionary paradigm, a subject in itself, was initiated by Guth (80) and Linde.(81)

The calculations of scalar fluctuations in cosmology in co-moving coordinates

has been presented many times; the original calculations go back to Fulling(82)

and are nicely reviewed by Birrell and Davies(70) and by Baumann.(83) The

Schrödinger picture of these fluctuations was nicely reviewed by Eboli, Pi

and Samiullah.(84) Some of the mathematics of the fluctuation spectrum as

viewed by an observer in de Sitter space appearing here were first studied by

Polarski.(85)
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3.3.1 Flat space: Inertial O and Rindler O

The simplest example of a non-trivial observer is a uniformly acceler-

ated observer O in flat spacetime. The goal in this section is to compare the

view this observer and his inertial friend O. As described in section 2.2, O can

send and receive signals everywhere, whereas O has non-trivial causal horizons:

she can only access the region x > |t| of flat spacetime. Nonetheless, we can

construct unitary time-evolution according to either observer. We will see the

famous Unruh e↵ect: if the field is in the vacuum |0i according to the inertial

observer O, then the accelerated observer O will register a thermal spectrum

on a detector.

Now, the inertial observer O will of course use the usual flat space

theory described in section 3.1.1. This description is global in the sense of

section 3.2.1, or one can view this as the comparison between two observers

as in section 3.2.2. Let us use the standard Minkowski coordinates xµ =

(t, x, y, z) = (t,x) = (t,y) for O’s frame. His modes ua(y) = upxp?(x, y, z) are

the usual plane waves of momentum p = (px,p?) described in section 3.1.1,

and the ground state wavefunctional is (3.59).

His accelerated friend O, boosted along the x-axis, has frame metric

given by (2.19), viz.

ds2 = � [1 + Ax̂]2 d⌧ 2 + dx̂2 + dx2
?, (3.131)

where here and after x? = y, z denote the transverse coordinates which are the

same for both O and O, ⌧ is the proper time of O and x̂ is the frame distance
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along his boost axis. It will actually be a little more convenient to rescale the

frame distance as x̂ = A�1(eA⇠ � 1), so that from this and (2.16) we have the

coordinate transformation between the coordinates of O and O given by

t = A�1eA⇠ sinhA⌧, x = A�1eA⇠ coshA⌧. (3.132)

In terms of the ⇠ coordinate, the frame metric (3.131) is

ds2 = e2A⇠
⇥
�d⌧ 2 + d⇠2

⇤
+ dx2

?. (3.133)

Here the spatial coordinate ⇠ runs from �1 to +1. The observer O is at

⇠ = 0, while ⇠ ! �1 is his horizon. These coordinates cover the right

Rindler wedge only, i.e. the causal diamond D[O].

At ⌧ = t = 0 the spatial slices of O and O coincide, except that O can

only see half of the slice, the part with x > 0, which is ⇠ > �1. We thus

break up the spatial slice ⌃t=0 = ⌃O of O’s frame at t = 0 into two pieces,

namely the right (x > 0) and left (x < 0) regions R = ⌃O and L = ⌃O. Then

we can directly apply the formalism of section 3.2.1. These regions are often

referred to as the right and left wedges of O because of their shape in the

global coordinate chart, see fig. 2.2.

To proceed, we need to produce complete sets of modes u↵(x) for O

as well as u↵(x) for the left wedge L. We begin with O. His frame is static

and we have equipped it with equal-time slices ⌃⌧ labeled by ⌧ , and so we can

apply the discussion from section 3.1.3. In particular, she would naturally give

a description of things by writing down his Hamiltonian and diagonalizing it;
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this Hamiltonian leads to a time evolution operator between slices of constant

frame time ⌧ . We will call this Hamiltonian HR since it only operates in the

right wedge.

Via the usual computations, the Hamiltonian is

HR =
1

2

Z
R

d⇠d2x?
⇥
(⇡R)

2 � 'RD'R

⇤
(3.134)

where the di↵erential operator is again Sturm-Liouville

D = @2⇠ + e2A⇠
�
@2? �m2

�
. (3.135)

This is acting on the field in the right wedge 'R = 'R(⇠,x?). To diagonalize

the Hamiltonian we therefore expand the field and momentum operators as

usual, making the obvious guess of plane waves for the transverse dependence,

'R(⇠,x?) =

Z
dkd2p?  kp?(⇠)

eip · x?

2⇡
'R(k,p?)

⇡R(⇠,x?) =

Z
dkd2p?  kp?(⇠)

eip·x?

2⇡
⇡R(k,p?).

(3.136)

If the axial modes satisfy the Sturm-Liouville problem

D kp?(⇠) = �!2
kp?

 kp?(⇠)

D = @2⇠ � e2A⇠2,  =
q
p2
? +m2

(3.137)

subject to self-adjoint boundary conditions, then we automatically get the

orthonormality and completeness relations in the right wedge R, and thus the

diagonal Hamiltonian

HR =
1

2

Z
dkd2p? ⇡†

R(k,p?)⇡R(k,p?) + !2
kp?

'†
R(k,p?)'R(k,p?). (3.138)
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The axial mode equation (3.137) can be solved exactly for any real !kp? .

The general solution of (3.137) is a sum of the modified Bessel functions I,K

with index i!kp?/A and argument eA⇠/A. The I functions blow up as their

argument tends to infinity while the K functions decay to zero, so we consider

only the latter, that is we take

 kp?(⇠) = Nkp?Ki!kp?/A

⇣ 
A
eA⇠

⌘
. (3.139)

These solutions are real-valued functions (up to the normalization). Notice

that this is the same function for ±!kp? so we only need to consider !kp? � 0.

We need the spectrum of frequencies !kp? , which follows from normalization

of the modes. Here is where writing things in Sturm-Liouville form really pays

o↵. From (3.137) one has that

�
!2
kp?

� !2
k0p?

� Z
d⇠  kp? k0p? =  kp?@⇠ k0p? �  k0p?@⇠ kp? (3.140)

as an antiderivative. Taking the integral over all real ⇠, the right hand side

only gets a contribution from the ⇠ ! �1 term since the  ’s decay at +1.

Now it is easy to work out that if we take the simple spectrum

!kp? = k � 0, (3.141)

and if

 kp? ! 1p
2⇡

⇥
ei(k⇠+�(k)) + e�i(k⇠+�(k))

⇤
(3.142)

as ⇠ ! �1, with �(k) any real constant, then (3.140) reduces toZ
d⇠  kp? k0p? = �(k � k0). (3.143)
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Fortunately for us, expanding (3.139) as ⇠ ! �1 and using (3.141), one has

that

 kp? ! Nkp
2⇡

r
⇡

2 k
A
sinh ⇡k

A

⇥
ei(k⇠+�(k)) + e�i(k⇠+�(k))

⇤
, (3.144)

where

�(k) =
!kp?

A
ln
h 
2A

i
+Arg �


i!kp?

A

�
(3.145)

is a k-dependent real constant whose detailed form is unimportant. So we see

that the correct normalization on the modes is

Nkp? =

r
2k sinh ⇡k/A

⇡A
. (3.146)

So in the end, we take the orthonormalized modes for the observer

u↵(x) = ukp? (⇠,x?) =

r
2k sinh ⇡k/A

⇡A
K ik

A

⇣ 
A
eA⇠

⌘
eip?·x? . (3.147)

Reality of the field operator then requires

'†
R(k,p?) = 'R(k,�p?), ⇡†

R(k,p?) = ⇡R(k,�p?). (3.148)

Next, we need to get modes u↵(x) on the part of space ⌃O = L that O

cannot access. Fortunately, everything we have just done is symmetric between

the left and right except that we are looking at the left wedge L where x < 0,

so we can send x 7! �x in the above and write down the answer. To be

precise, we define coordinates (⌧ , ⇠) on L by

t = A�1eA⇠ sinhA⌧ , x = �A�1eA⇠ coshA⌧ . (3.149)
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We have that ⇠ ! �1 is the pair of rays x = �|t| while ⇠ ! +1 is spatial

infinity x ! �1.10 The modes in the left wedge are then given by

u↵(x) = uk̂p?

�
⇠,x?

�
=

s
2k̂ sinh ⇡k̂/A

⇡A
K ik̂

A

⇣ 
A
eA⇠

⌘
eip?·x? , (3.150)

and reality of the field operator requires

'†
L(k̂,p?) = 'L(k̂,�p?), ⇡†

L(k̂,p?) = ⇡L(k̂,�p?). (3.151)

It is worth noting that one can view the region L, these modes, etc. as sim-

ply those of another uniformly accelerated observer O traveling symmetrically

opposite to O.

Let us now suppose that the state of the field ' is the vacuum |0i of

the inertial observer, that is the usual Poincaré-invariant ground state of flat

spacetime. How does O view this state? The wavefunctional of this state is

(3.59), which in terms of the inertial observer’s modes reads

 ['] = N exp

⇢
�1

2

Z
d3p !

p

'†(p)'(p)

�
, N =

Y
p

s
⇡3

!
p

. (3.152)

Note that we have !2
p

= p2x + 2. Now we can express this in terms of the

modes in R and L by using (3.116), which here reads

'(px,p?) =

Z
dkd2p0

? P ⇤
kp0

?,pxp?
'R(k,p

0
?) +

Z
dk̂d2p0

? P ⇤
k̂p0

?,pxp?
'L(k̂,p

0
?).

(3.153)

10It should be noted that the flow of time ⌧ here is still future-directed with respect to
t, i.e. moving upwards on a spacetime diagram. This is in contrast to the way this is often
done, in which one just extends the Rindler coordinates x̂ ! �1 over the left wedge and
then time evolution in the left wedge is past-directed with respect to t.
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Thus we need the coe�cients of the projection operators P , determined by

(3.114) which here are given by

Pkp0
?,pxp? = Pkpx�(p? � p0

?)

Pk̂p0
?,pxp?

= Pk̂px
�(p? � p0

?),
(3.154)

with

Pkpx =

Z 1

0

dxp
2⇡

eipxx k,p?(⇠(x))

Pk̂px
=

Z 0

�1

dxp
2⇡

eipxx k̂,p?
(⇠(x)).

(3.155)

Doing these integrals is not a party, but one can for example break up the

exponentials into their sine and cosine pieces and look up the answers for

those integrals. In any case, if we let

q =
px

, Q = q +

p
1 + q2, (3.156)

then one finds

Pkpx =

p
k/A

2
p
1 + q2

p
sinh ⇡k/A

⇥
e�⇡k/2AQik/A + e⇡k/2AQ�ik/A

⇤
Pk̂px

=

q
k̂/A

2
p
1 + q2

q
sinh ⇡k̂/A

h
e⇡k̂/2AQik̂/A + e�⇡k̂/2AQ�ik̂/A

i
.

(3.157)

It will be convenient in a moment to notice that these Pkpx , Pk̂px
coe�cients

satisfy Z 1

�1
dpx !p

P ⇤
kpxPk0px =

⇡k

tanh ⇡k/A
�(k � k0) (3.158)

and similarly for k̂, while the cross-terms satisfyZ 1

�1
dpx !p

P ⇤
kpxPk̂px

=
⇡k

sinh ⇡k/A
�(k � k̂). (3.159)
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Now putting this all into the ground state wavefunctional (3.152), we have

 ['] = N exp

⇢
� 1

2

Z
dkd2p? ⇡k

'†
R(k,p?)'R(k,p?) + '†

L(k,p?)'L(k,p?)

tanh ⇡k/A

� '†
L(k,p?)'R(k,p?) + '†

R(k,p?)'L(k,p?)

sinh ⇡k/A

��
.

(3.160)

As advertised, we see that this state contains (complete) correlations

between the left and right regions. The expression (3.160) is not a description

only in terms of things visible to O, because it contains field amplitudes in the

left region, which is behind his horizon. In order to get things in terms of O’s

measurement apparatus alone, we need to integrate out the fact that she is

ignorant of what is going on behind his horizon, which can be accomplished by

tracing over 'L configurations. Precisely, we have the reduced density matrix

given by (3.122). This expression can be evaluated by completing the squares

on some Gaussians, yielding

⇢O['
1
R,'

2
R] =

Z
C

Y
k̂

d'L(k̂,p?) 
⇤['L,'

1
R] ['L,'

2
R]

= Z�1 exp

⇢
� 1

2

Z
dkd2p? ⇡k

'1†
R (k,p?)'1

R(k,p?) + '2†
R (k,p?)'2

R(k,p?)

tanh 2⇡k/A

� '1†
R (k,p?)'2

R(k,p?) + '2†
R (k,p?)'1

R(k,p?)

sinh 2⇡k/A

��
,

(3.161)

where the normalization

Z =
Y
kp?

⇡p
k tanh ⇡k/A

(3.162)
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was chosen so that tr ⇢O = 1. This is a thermal density matrix for an infinite

collection of harmonic oscillators, expressed in the position basis, which in this

context means in field space.(? ? ) The temperature is T = A/2⇡. Note that

everything is totally degenerate in the p? index, i.e. this is a density matrix

for an ensemble of independent 1 + 1 dimensional systems.

3.3.2 Scalar fluctuations in cosmology: global view

In flat spacetime, some observers are able to probe the entire spacetime.

In a general setting, however, it may be that there is no one who can do

this. As discussed earlier, this is precisely the scenario implied by the ⇤CDM

cosmology, or any other cosmology with a scale factor accelerating into the

asymptotic future. In order to explore the observations of a particular observer

in such a cosmology, in this and the next section, we will consider an inflating

spacetime with a(t) = eHt.

The purpose of this section and the next is to contrast the standard

quantum theory assigned to the global spacetime to the quantum theory of

some particular observer; the latter is known to give a good descriptions of

observations of cosmological observables in the cosmic microwave background,

while the latter is much less explored. We will see that very much like the

Rindler case, the observer’s frame allows for a well-defined vacuum state |0i,

but this state does not yield the correct spectrum of cosmological fluctuations.

Instead, we can assign to the global spacetime the usual choice of state (the

Bunch-Davies state, described below), and we will see that in this state any
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particular observer will again view this as a thermal spectrum of fluctuations

about his vacuum.

We begin with a general FRW metric in the usual co-moving coordi-

nates,

ds2 = �dt2 + a2(t)
⇥
dx2 + dy2 + dz2

⇤
(3.163)

where we have taken flat spatial sections for simplicity. The generalization

to curved spatial slices is straightforward. Clearly this metric is of the form

(3.94), with Gij(t) = a2(t)�ij: it is spatially homogeneous. Moreover, it is

spatially isotropic about every point. That is, the spatial slices have symmetry

group R3 n SO(3). This combination of symmetries encodes the Copernican

principle: no point or direction in space is special. However, the presence of

an observer explicitly breaks this symmetry by picking out a point in space.

Since the metric is homogeneous, we can immediately find the quan-

tum theory of a free real scalar by following the procedure given in section

3.1.3. We will see the famous scale-invariant spectrum of inflationary pertur-

bations, which are widely believed to have sourced the observed temperature

anisotropies of the cosmic microwave background.

In terms of the notation of section 3.1.3, we write the field operator as

'(x) =

Z
d3k

(2⇡)3/2
eik·x'(k), ⇡(x) =

Z
d3k

(2⇡)3/2
eik·x⇡(k), (3.164)

and find that each co-moving momentum mode k has a time-dependent Hamil-

tonian

H
k

(t) =
1

2


⇡†(k)⇡(k)

M(t)
+M(t)!2

k

(t)'†(k)'(k)

�
. (3.165)
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Here the e↵ective mass and frequency are

M(t) = a3(t), !2
k

(t) =
p2

a2(t)
+m2. (3.166)

Again the momentum vectors are coordinate vectors in the sense that k2 =

k · k = �ijkikj. We see that the e↵ective mass M of each mode is identical.

From here out we specialize to the inflationary case a(t) = eHt. We see

that for any fixed k, the mode’s frequency gets arbitrarily large at arbitrarily

early times, and becomes independent of the mass. Its physical momentum

k/a ! 1. Thus, the mode is oscillating on very short timescales, and the

equivalence principle suggests that one should take its state to be like the

vacuum in flat space since it is not probing the curvature. This means that

we take a Gaussian wavefunctional

 [', t] =
Y
k

 
k

(t),  
k

= N
k

(t) exp
�
�fk(t)'

†(k)'(k)/2
 
, (3.167)

where we need an initial condition for the width fp(t). This is set by the

condition that the two-point function should reduce to the flat-spacetime ex-

pression, in terms of the physical momentum p = k/a and physical distance

y = ax, that is to say

h |'(x)'(x0)| i =
Z

d3k

(2⇡)3
eik·(x�x

0)

2Refp(t)
!

Z
d3p

(2⇡)3
eip·(y�y

0)

2p
. (3.168)

In other words, the width should approach

fk(t) ! a2k (3.169)

132



at arbitrarily early times for any fixed k, or more precisely in the limit k/aH !

1. The state defined in this way is known as the Bunch-Davies state. Here we

have assumed rotational invariance of the state so that f
k

= fk only depends

on the magnitude k of the momentum k.

Although we could in principle time-evolve this state using the formal

unitary time-evolution operator defined above, it is a little more straightfor-

ward to just solve the Schrödinger equation mode-by-mode. Let us work in

the massless case m2 = 0. The time-dependent Schrödinger equation

i@t = H (3.170)

reduces, using the Gaussian product ansatz (3.167), to an infinite set of simple

equations

i
dfk
dt

=
f 2
k

a3
� ak2. (3.171)

It is not too hard to work out the general solution: these are called Riccati

equations and can be easily reduced to 2nd order linear di↵erential equations.

In any case, the solution with the correct initial behavior (3.169) is given by

fk(t) =
ik2a

H
�
1� i k

aH

� (3.172)

which yields the two-point function, using (3.61)

h |'(x)'(x0)| i (t) =
Z

d3k

(2⇡)3
eik·(x�x

0) H
2

2k3

✓
1 +

k2

a2(t)H2

◆
. (3.173)

One can easily see that at late times, that is when the mode’s physical wave-

length is much longer than the Hubble radius k/aH ⌧ 1, the second term in
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parentheses drops out. This leaves a time-independent piece,

h'(k)'(k0)i = H2

2k3
�(k+ k0). (3.174)

This result is the “scale-invariant” power spectrum of primordial inflation.

The origin of the phrase scale-invariant is that if one rescales the coordinates

and momenta k 7! �k,x 7! x/�, the integrand in (3.173), evaluated at late

times, remains unchanged.

Let us summarize what we have done. We expanded the field in a ba-

sis of co-moving momentum modes and assumed that the state of the field

was pure. This definition involves choosing the state across all of space at

co-moving t ! �1. This state contains correlations which no single observer

can measure! It is then interesting to see how some particular observer O will

view the situation, which is the what we shall pursue in the next section. To

facilitate this, it is useful to briefly repeat the above calculation in spherical

coordinates, i.e. to drop translational symmetry, since no observer can really

check this either. Indeed, a point recently emphasized by Kamionkowski and

collaborators is that, after all, when one does an observation in cosmology it

is almost invariably done on some sphere (or at best on a spherical shell) at

fixed time and radius. Thus it is quite natural to calculate in spherical coor-

dinates, rather than calculating in Cartesian coordinates and then projecting

the answers onto a sphere.(86)

The Hamiltonian in spherical coordinates is

H =
1

2

Z
drd✓d�r2 sin ✓


⇡2

a3r4 sin2 ✓
� '

Dt

r2
'

�
(3.175)
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in terms of the time-dependent radial operator

Dt =
1

a2
⇥
@r(r

2@r)� L2
⇤
�m2r2. (3.176)

Much like we can use ordinary plane waves in Cartesian co-moving coordinates,

we can use spherical Bessel functions in co-moving spherical coordinates, fol-

lowing appendix B. Indeed, define the weight function W = r2. One finds

easily that if we take spherical Bessel functions vk`(r) = Nk`j`(kr) just as in

flat spacetime, they satisfy

Dtvk` = �W!2
k(t)vk` (3.177)

with the frequencies and normalization

!2
k(t) =

k2

a2
+m2, |N

k

|2 = 2k2

⇡
. (3.178)

We then expand the field operators in terms of these

'(r, ✓,�) =

Z
dk

X
`m

vk`(r)Y
m
` (✓,�)'(k, `,m)

⇡(r, ✓,�) = r2 sin ✓

Z
dk

X
`m

vk`(r)Y
m
` (✓,�)⇡(k, `,m),

(3.179)

and obtain

H(t) =
1

2

Z
dk

X
`m

⇡†(k, `,m)⇡(k, `,m)

M(t)
+M(t)!2

k(t)'
†(k, `,m)'(k, `,m),

(3.180)

where as before the time-dependent mass is M(t) = a3(t) for every mode.

One can once again consider a product state consisting of Gaussian

wavefunctions on each mode. One finds trivially that the width fk(t) of each

135



mode obeys the same equation and boundary condition as it did in Carte-

sian coordinates, as a simple consequence of rotational invariance. We are

interested in the two-point function of the field, evaluated on some particular

comoving sphere at late times. Going through the same computations as we

did above, one has, in general,

h'(r, ✓,�)'(r, ✓0,�0)i =
Z

dk
X
`m

|vk`(r)|2Y m⇤
` (✓,�)Y m

` (✓0,�0)

2Refk(t)
. (3.181)

Taking the massless case m2 = 0 and considering late times, one has again

that

Refk !
k3

H2
. (3.182)

The usual observable we are interested in is the angular power spectrum eval-

uated on this sphere; the general definition of the angular power spectrum

(B.27), and here one obtains

C` =
H2

⇡

Z
dk

k
|j`(kr)|2 =

H2

2⇡`(`+ 1)
. (3.183)

This is a very nice manifestation of scale-invariance of the state: the angular

power spectrum is independent of the radius r of the sphere on which it is

evaluated!

3.3.3 Scalar fluctuations in cosmology: observer view

In the previous section, we saw how the standard picture of unitary

time-evolution between global spatial slices produces what is generally believed

to be the correct spectrum to explain the CMB. This is an incredible success,
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and it is very interesting that it relies on adopting unitary evolution for a set

of data which is not actually causally accessible to any particular observer.

Indeed, the scale factor a(t) = eHt causes any inertial observer to see an event

horizon, as described in the first chapter.

Of course, in real life, inflation did not last forever! Rather, inflation

was a period of accelerated expansion with a Hubble parameter much larger

than that of the modern era, Hinf � H0. Indeed, Hinf/H0 & 1040 by very

conservative bounds. What is really going on is that to very good approxima-

tion, we are today a “meta-observer” of the early inflationary period: we can

see very nearly all of it. Thus it is not so crazy to treat unitary evolution as

we did above.(87)

Nonetheless, both as a point of principle and as a potential source of

deviations from the calculations above, it is important to understand how

these calculations can be translated into the viewpoint of an actual, physical

observer. This is the goal of this chapter. In fact, we are still going to make

quite a large idealization: we will imagine an observer O who is immortal

and simply sitting at some fixed spatial location forever, which without loss

of generality we can take to be the spatial origin of comoving coordinates.

To begin we will consider such an observer in a universe undergoing inflation

forever with the same Hubble parameter.

As described in the first chapter, this observer’s frame is described by

the metric

ds2 = � cos2 H⇢d⌧ 2 + d⇢2 +H�2 sin2 H⇢d⌦2, (3.184)
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with d⌦2 = d✓2 + sin2 ✓d�2 the standard round metric on a 2-sphere. This is

the famous static patch of de Sitter space. The coordinates cover the causal

diamond of O, which is half of the Penrose diagram of co-moving inflationary

coordinates, see the first chapter.

This metric is static and thus we may apply the formalism from above.

In fact, this already bears remarking. Co-moving coordinates are not static,

and so admit no vacuum state in the usual sense; this is not true in the

observer’s frame! In the frame we will explicitly construct a vacuum |0i as

usual. Nevertheless, we will see that the observer’s vacuum does not give

the correct fluctuation spectrum to reproduce the observed CMB anisotropies;

rather, one requires thermal boundary conditions at past infinity.

This metric is spherically symmetric and static, i.e. of the form (3.78),

with

N = cosH⇢, A = H�1 sinH⇢. (3.185)

Thus we have the weight function

W =
sin2 H⇢

H2 cosH⇢
. (3.186)

In order to calculate the wave functions and time-evolution of the theory, we

are interested in solving the Sturm-Liouville problem

Dvp`(⇢) = �W (⇢)!2
p`vp`(⇢) (3.187)

in terms of the di↵erential operator

D = @⇢(NA2H⇢@⇢)�NL2 �NA2m2. (3.188)
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This system can be solved analytically, we will do this shortly.

A very interesting feature is in the boundary conditions. A simple hope

for possible boundary conditions in some observer’s coordinates would be that

one could impose them only in a neighborhood of the observer, say on some

small sphere about the origin. One might interpret this as encoding the part of

quantum field theory that allows for local measurements of particles or other

disturbances as locally viewed by the observer. Would such a set of boundary

conditions necessarily lead to unitary time-evolution?

An optimistic argument from relativity would suggest that, if the bound-

ary of coordinates lie on the horizon of the observer, the detailed nature of

the boundary conditions there cannot possibly a↵ect his observerations. This

is because by definition, the boundary delineates the part of space from which

the observer can never measure a signal. However one would really like to

ensure the existence of the quantum field theory, i.e. of the mode spectrum,

if possible, and so it is rather important to check that this can be done in

detail. One would like an actual computation of the spectrum of the theory,

its two-point function, etc., as formulated strictly within the confines of the

observer’s frame, and subject only to such observer-boundary conditions. We

now pursue this.

The radial equation reduces to the hypergeometric equation. Rescaling

the radial mode

vp`(⇢) = tan`(H⇢) cosn(H⇢)Rp`(⇢) (3.189)
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where the (in general complex) number n parametrizes the mass,

m2

H2
= �n(n+ 3) =) n = �3

2
+

r
9

4
� m2

H2
, (3.190)

one obtains the hypergeometric equation for R. As with any radial wave

equation, we get two linearly independent solutions, one of which blows up at

the origin. The regular solution is

Rp`(⇢) = Np`F


`� n+ i!p`/H

2
,
`� n� i!p`/H

2
, `+

3

2
;� tan2(H⇢)

�
(3.191)

The � tan2(H⇢) runs from 0 to �1 as H⇢ runs from 0 to ⇡/2, so here we are

working with the principal branch of the hypergeometric function, with the

branch cut on the last argument running from 0 to +1 along the positive real

axis.

Imagine some small spatial sphere at each fixed time ⌧ and demand

that the modes and their derivatives evaluated on this sphere are equal to

the those of a free scalar field in Minkowski space, similarly evaluated on a

small sphere near the spatial origin. As explained in detail in the appendix,

this means that vp`(⇢) ⇠ j`(p⇢) ⇠ ⇢` should behave like a spherical Bessel

function. By simply Taylor expanding (3.191), one finds that to lowest order,

all of the regular solutions have this property, with

!p` = p. (3.192)

Thus with these boundary conditions, the spectrum is continuous : the fre-

quency can take any real value. There is no restriction on the total angular
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momentum `. Note that this means that the horizon does not impose an IR

cuto↵ on the frequency: although the volume of space is finite, the observer

can still have a continuum of modes down to ! ! 0.

On the other hand, in order to normalize the modes, we need to produce

a delta function, and this will require data all the way out to the horizon.

Indeed, the goal is to find N!` so that

(vp`, vp0`) =

Z ⇡/2H

0

d⇢ W (⇢)v⇤p`(⇢)vp0`(⇢) = �(p� p0). (3.193)

Here working with the radial equation in Sturm-Liouville form pays o↵ again.

Note that the radial di↵erential operator is of the form D = @⇢(P (⇢)@⇢)+Q(⇢).

Thus, one easily has from (3.187) and its conjugate that

�
!2
p` � !2

p0`

� Z
d⇢Wv⇤p`vp0` = NA2

�
vp0`@⇢v

⇤
p` � v⇤p`@⇢vp0`

�
, (3.194)

as an antiderivative. Now to get Np`, let us consider the integral taken from

⇢ = 0 to H⇢ = ⇡/2� ✏, and we will send ✏! 0 at the end. In other words we

regulate the computation by taking the boundary to be a “stretched horizon”

at some small distance ⇠ ✏ from the real horizon. One can easily check that

the right-hand-side of this equation vanishes at ⇢ = 0, so we only need to

compute the upper limit. As ✏! 0 one has the expansion

vp`(⇢) ⇡ Np`

�
Ap`✏

ip/H + A⇤
p`✏

�ip/H
�

(3.195)

where the coe�cient is

Ap` =
�
⇥
`+ 3

2

⇤
�
⇥
� ip

H

⇤
�
h
3+`+n�ip/H

2

i
�
h
`�n�ip/H

2

i , (3.196)
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and we are using the boundary condition (3.192).

We see that each wavefunction near the horizon consists of a super-

position of an in- and out-going wave, with equal magnitude, at least to

first approximation. The derivatives are a bit messier; using @zF (a, b, c; z) =

ab
c
F (a+ 1, b+ 1, c+ 1; z) one can get a reasonable expression. After the dust

settles we find that in the limit of small ✏, one has

NA2
�
vp0`@⇢v

⇤
p` � v⇤p`@⇢vp0`

�
! 2 |Np`|2 |Ap`|2 (p+p0) sin

✓
p� p0

H
ln ✏

◆
, (3.197)

where we dropped terms that oscillate rapidly even if ! = !0, and anticipated

the �-function by setting p = p0 in the slowly varying functions. Using this,

(3.194), and the usual limiting expression lima!0 sin(⇡x/a)/⇡x = �(x) we have

that in the limit ✏! 0,Z ⇡
2H�✏

0

d⇢ Wv⇤p`vp0` = 2⇡ |Np`|2 |Ap`|2 �(p� p0) (3.198)

so that finally we have the normalization

|Np`|2 =
1

2⇡|Ap`|2
. (3.199)

We see that it is possible to impose boundary conditions only at the

origin, and still obtain a complete spectrum across the entire causal diamond

of the observer. It is unclear if this remarkable result will hold in a time-

dependent problem. It should be emphasized that we have not used any sym-

metry here except for spherical symmetry; the rest of the de Sitter group has

been broken by the presence of the observer.
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Having done the hard work of solving the radial spectrum, we can

simply write down the quantum theory directly by our general discussion on

static metrics above. In particular, we can perform canonical quantization and

diagonalize the Hamiltonian, as in (3.89). We could furthermore go ahead and

introduce creation and annihilation operators ap`m, a
†
p`m via

'(p, `,m) =

r
1

2p

h
ap`m + a†p`�m

i
⇡(p, `,m) = �i

r
p

2

h
ap`m � a†p`�m

i (3.200)

and find the ground state of this Hamiltonian by

ap`m |0i = 0. (3.201)

This is a vacuum one might call the observer’s vacuum: it is the state of

lowest energy as measured in his frame. This is not the Bunch-Davies state:

we will see shortly that the BD state looks like a thermally populated ensemble

built over this vacuum. Unlike the BD state, this vacuum is time-translation

invariant, in the observer’s time ⌧ . It is again a Gaussian wavefunctional when

expressed in terms of the '(p, `,m) variables.

Let us consider some correlation functions in this state. For cosmolog-

ical purposes, we are particularly interested in angular correlations on a fixed

sphere at some particular time, for example the surface of last scattering in

CMB calculations. Note that the choice of such a sphere can be done in either

comoving (t, r) or frame (⌧, ⇢) coordinates, and thus we can directly compare

the results. In the frame, the two-point function of the scalar is given in gen-

eral by (3.93); we are interested in its behavior when both fields are evaluated
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at the same radial distance ⇢ = ⇢0, and a pair of arbitrary angles ! 6= !0. This

is explicitly given by

h0|'(⌧, ⇢,!)'(⌧, ⇢,!0)|0i =
Z

dp

2p

X
`m

|vp`(⇢)|2 Y m⇤
` (!)Y m

` (!0). (3.202)

Note that this is time-independent as one would expect since we are studying

the vacuum of a static system. Now, we can define an angular power spectrum

by taking a harmonic transform of what is left, as we did in the comoving case.

Again from the definitions (B.27) one obtains the spectrum

C`(⇢) =

Z
dp

2p
|vp`(⇢)|2 . (3.203)

This is certainly not scale-invariant: it depends both on the angular scale with

a coe�cient di↵erent than 1/`(`+1), and on the radius at which it is evaluated.

On the other hand, we can turn the logic of the Rindler case on its head:

there, we saw that an accelerated observer measures a thermal spectrum on a

detector if she is accelerated through the vacuum of the ambient flat spacetime.

Here, we can compute the angular power spectrum, except that instead of

doing so in the “frame vacuum” (3.201), we can assume a thermal density

matrix. Since our description of the field consists of a bunch of uncoupled

systems labeled by ↵ = {p`m} we can write this as a product

⇢ =
O
↵

⇢↵ (3.204)

with

⇢↵ = Z�1
↵

X
n↵

e��n↵!↵ |n↵i hn↵| . (3.205)
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Here, the prefactor is the partition function of a single ↵ oscillator

Z�1
↵ =

�
1� e��!↵

�
. (3.206)

To compute the two-point function, we want as usual to look at

h'(x)'(x0)i =
X
↵�

u↵(x)u�(x
0) h'(↵)'(�)i (3.207)

Now we need the expectation value. It is given by

h'(↵)'(�)i = tr [⇢'(↵)'(�)]

= tr↵ [⇢↵'(↵)'(�↵)] �(↵ + �)

= Z�1
↵

X
n↵

e��n↵!↵ hn↵|'(↵)'(�↵)|n↵i �(↵ + �)

= Z�1
↵

X
n↵

e��n↵!↵

2!↵
(1 + 2n↵) �(↵ + �)

=
1

2!↵ tanh �!↵/2
�(↵ + �).

(3.208)

Putting this together, evaluating everything at some particular radius, setting

� = 2⇡/H and writing the indices explicitly, we obtain

h'(⇢, ✓,�)'(⇢, ✓0,�0)i =
X
p`m

|vp`(⇢)|2

2p tanh ⇡p/H
Y m⇤
` (✓,�)Y m

` (✓0,�0) (3.209)

and we can read o↵ the angular power spectrum

C`(⇢) =

Z
dp

2p

|vp`(⇢)|2

tanh ⇡p/H
. (3.210)

⇢ = Z�1
Y
p`m

X
np`m

e��np`m!p |np`mi hnp`m| . (3.211)
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Chapter 4

Conclusions and outlook

To date, we have learned much about gravitational physics and quan-

tum gravity in particular, but a truly quantum theory of gravitating systems

relevant to the real world has not been forthcoming. After searching for such

a theory for decades, it seems a good exercise to stand back and re-evaluate

what precisely we are attempting to find.

Ultimately, what we want is a coherent theory, formulated within the

framework of quantum mechanics, capable of defining and making predictions

for observables sensitive to gravity. This problem has traditionally been at-

tacked from the “top down”: one postulates some theory, typically something

like a quantum field theory, figures out the observables of the theory, works out

predictions for them, and then inevitably runs into problems. This method is

an attempt to solve a very di�cult inverse problem largely by guesswork, and

without many potential experimental checks.

One could instead try to build things from the ground up, and this

thesis has advocated for this approach. Specifically, I have argued that a

natural starting point is to look for good observables by considering quantities

that are measurable at least in principle by an observer. We have gone through
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a systematic study of frames of reference for these observers and the concept

of quantum mechanical unitary, two concepts which are fundamentally linked

by the fact that they both refer to the outcomes of measurements.

The essential conclusion one can draw from this study is that it is

definitely desirable and likely possible to find a cohesive, quantum-mechanical

theory of these observers and their observations, without relying on knowledge

of the detailed dynamics of nature in the ultraviolet. This is because one always

knew two more-or-less tautological facts, independent of any dynamics: any

measurement must have some outcome, and any set of coordinates can be

chosen to parametrize these measurements. Here I humbly suggest a third

such fact: the measurements we need to describe are made by measuring

devices or, more generally, observers.

The dream is that finding such a theory of observation can help lead us

to a complete quantum theory of gravity. At the least, it can almost certainly

help us to define what exactly we mean by a quantum theory of gravity. We

know a great deal about many systems, but the systematization of observation

itself does not yet exist, and it is my hope that this work constitutes a helpful

first step in this direction.

Ultimately, one must face a question that may be deeply unsettling. Are

we really just some hapless measuring devices viewing some global, objective

reality, or is the traditional picture of space and time nothing more than a

convenient device for describing our shared experiences?
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Appendix A

Causal structure on Lorentzian manifolds

In this appendix I will briefly review some of the theory of causal struc-

ture on Lorentzian manifolds, as required in the main text. The treatment will

be somewhat di↵erent from, say, that of Hawking and Ellis or Wald, in that

it is centered on the experiences of physical observers, defined as always as a

given timelike worldline. For example, I will make no distinction between a

cosmological and black hole horizon; they are both simply the boundaries of

someone’s past lightcone.

I note that, much like the main body of the text, nothing in this ap-

pendix relies on the Einstein equations; we only need the Lorentzian structure

of a metric in order to define the causal nature of curves and regions. This

is pure kinematics, not dynamics. Here I will formulate the formal theory; I

refer the reader to the main text for details and coordinate expressions for the

cases studied there.

Fix a Lorentzian spacetime (M, g) which we assume is time-oriented.

Let O denote an arbitrary timelike worldline,1 which we will refer to as the

1As usual, a curve is called timelike, null, or spacelike if its tangent vector v has gµ⌫vµv⌫

negative, zero, or positive respectively. In what follows I am only talking about curves which
maintain their signature along their entire duration; one can easily extend the discussion to

149



observer’s worldline or simply the observer. We may imagine that this world-

line is specified by some local coordinate functions O = Oµ(⌧) parametrized

by proper time along the worldline. We are interested in precisely formulating

what this observer can “causally access”. In other words, we are concerned

with what set of events is connected to her worldline by null (or timelike)

curves, along which information may propagate.

At any spacetime event p, one can consider the set of vectors v 2 Tp(M)

tangent to all the curves passing through that point. The set of these vectors

which are null forms the local lightcone at p; note that this includes both

future-directed and past-directed vectors, i.e. a forward and past lightcone.

More generally one can break up the tangent space Tp(M) into its timelike,

null and spacelike parts.

One can extend these geodesically by considering the geodesics which

pass through p with the appropriate signature tangent vectors. The set of

points swept out by the timelike and null geodesics into the future (past) is

sometimes called the causal development (past) of the the point p, denoted

by ⌃±(p). In particular one can study the null geodesics through p; we will

often loosely refer to the points swept out in this fashion as the future or past

lightcone of p and denote these by FLC(p) and PLC(p), respectively. The

lightcones bound the causal development of a point, i.e. FLC(p) = @⌃+(p)

while PLC(p) = @⌃�(p).

the more general case.
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Suppose that the worldline begins at some time ⌧0 and ends at some

later time ⌧f , which we may take to ±1 when convenient. The two spacetime

events O0 = O(⌧0) and Of = O(⌧f ) are the first and last points at which the

observer can make a measurement. Thus, the past lightcone of Of bounds

precisely the events from which the observer can ever receive a signal, while

the future lightcone of O0 bounds those to which he can send a signal. We

will thus simply refer to these as the past and future lightcones of O, that

is PLC(O) = PLC(Of ), FLC(O) = FLC(O0). The intersection of these

lightcones bounds the set of events which the observer can first send a signal

to and then receive a signal from; we call this set and its null boundary the

causal diamond of O. Precisely, we define D(O) = ⌃�(Of ) \ ⌃+(O0), and we

have that @D(O) = PLC(O) \ FLC(O). The reason for this terminology is

that this region is diamond-shaped on a Penrose diagram, described shortly.

Generically, there will be events outside of either or both of the light-

cones of a given observer. These events are connected to her worldline only by

spacelike curves. One could therefore define the past lightcone of the observer

to denote her event horizon and her future lightcone to denote her future hori-

zon, which delineate the regions from which he cannot ever receive a signal

from or send a signal to, respectively. In the case that the observer is immor-

tal, that is ⌧0 ! �1 while ⌧f ! +1 (or anyway if her worldline ends on the

past and future boundary of the spacetime), these definitions recover the usual

ones. It is critical to note that the horizons are global objects that depend on

the entire history of the observer. A local measurement cannot determine the
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existence of an event or future horizon.

In particular, the usual cosmological horizons are necessarily defined by

just such an immortal observer O sitting at some fixed co-moving position and

waiting around forever to send and receive signals. The future horizon is some-

times called the “particle horizon” in this setting. Likewise, the horizons of a

black hole can similarly be defined this way. For example, the Schwarzschild

black hole’s event horizon is precisely the past horizon of an observer located

arbitrarily far away from the black hole, or rather from the coordinate singu-

larity that defines it; that is, the interior of the black hole represents the set

of events from which this particular observer can never receive a causal signal.

The Rindler horizons are defined similarly.

There are other types of horizons one can define which may be local,

rather than global. A particularly useful one is the apparent horizon. Consider

some spacelike slice and a closed two-dimensional surface S on this slice. One

can construct four families of null geodesics orthogonal to this surface, two

past-directed and two future-directed.2 Pick one of these families and let

kµ(⌘) be the tangent vectors of this family on S; in practice it is useful to

allow ⌘ to be non-a�ne, so that one only has rkkµ(⌘) = (⌘)kµ(⌘) where r is

the covariant derivative. Consider the null geodesic expansion of this family,

given by

⇥ = rµk
µ �  (A.1)

2I learned the following illuminating characterization from Edgar Shaghoulian: simply
place a set of lightbulbs and a set of photoreceptors on both sides of the surface.
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again evaluated on S. This quantity has the interpretation as the fractional

rate of change of the surface area swept out by the null geodesics. If the surface

S has at least two families with exactly vanishing expansion ⇥ = 0, we call it

an apparent horizon. The reason for this terminology is because, at least at the

instant of time defining the spacelike slice, this surface “looks” like an event

or future horizon: its future- or past-directed orthogonal lightrays appear to

track the surface. The notion of an apparent horizon is particularly useful

in time-dependent metrics, because one can find it locally without having to

integrate things over the entire history of the observer.

Finally, the most practically useful tool in describing the causal struc-

ture of a spacetime is undoubtedly the notion of a Penrose, or conformal,

diagram. The essential idea is to consider the fact that conformal mappings

of the metric

gµ⌫(x) 7! ⌦2(x)gµ⌫(x), (A.2)

with ⌦ an arbitrary scalar function, preserve the Lorentzian signature of any

vector. Even better, null geodesics are mapped into null geodesics. Therefore,

one can often work out such a conformal transformation, perhaps in addition

to a compactification, so that one can represent the entire causal structure of

a spacetime on a piece of paper. This is particularly powerful if the spacetime

is spherically symmetric. In the main text, I have simply drawn a number of

such diagrams for spacetimes where the Penrose diagram is already known. It

is trivial to read o↵ the causal structure associated to some observer in such a

spacetime: one starts by simply drawing the worldline of the observer on the
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diagram, and then draws her lightcones just like one would on a Minkowski

spacetime diagram. One should take some care in the case where one draws

more than one observer, since one has then explicitly broken spatial rotational

invariance, and the lightcones of one or the other observer may not cover the

full spatial spheres being supressed on the diagram.
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Appendix B

Elementary QFT on the sphere

This appendix collects the essential results of canonical quantization,

in the Schrödinger picture, of a free scalar field on both S2 and R3 expressed

in spherical coordinates.

We begin with the sphere. We take the metric

ds2 = �dt2 +R2
⇥
d✓2 + sin2 ✓d�2

⇤
, (B.1)

where we give the sphere a constant radius R, leaving this explicit for easy

dimensional analysis, and because it makes the various generalizations in this

work more obvious. One works out easily that the Hamiltonian is, after inte-

grating by parts once, given by

H =
1

2

Z
d✓d�R2 sin ✓


⇡2

R4 sin2 ✓
+ '

L2

R2
'+m2'2

�
(B.2)

where we used the coordinate expression of the angular momentum operator

L2 = � 1

sin ✓


@✓(sin ✓@✓) +

1

sin ✓
@2�

�
. (B.3)

Obviously this can be diagonalized with spherical harmonics. Precisely, we

expand the field and momentum operators, as usual in the Schrödinger picture,

'(✓,�) =
X
`m

Y m
` (✓,�)'(`,m), ⇡(✓,�) = R sin ✓

X
`m

Y m
` (✓,�)⇡(`,m). (B.4)
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Reality of the field operator, given the usual conjugation properties of the

spherical harmonics, means that we need

'(`,m) = (�1)m'†(`,�m), ⇡(`,m) = (�1)m⇡†(`,�m). (B.5)

The canonical commutation relations are easily satisfied by this expansion

because the spherical harmonics form a complete basis for functions on the

sphere. That is, imposing

['(`,m), ⇡(`0,m0)] = i(�1)m�``0�m,�m0 (B.6)

one has

['(✓,�), ⇡(✓0,�0)] = sin ✓
X
`m

Y m⇤
` (✓,�)Y m

` (✓0,�0)

= i�(✓ � ✓0)�(�� �0).
(B.7)

Plugging the mode expansion back into the Hamiltonian, one gets

H =
1

2

X
`m

⇡†(`,m)⇡(`,m) + ⌦2
`'

†(`,m)'(`,m), (B.8)

where the mode frequencies are

⌦2
` =

`(`+ 1)

R2
+m2. (B.9)

We can find the ground state by defining creation and annihilation operators

'(`m) =
1p
2⌦`

h
a`m + a†`,�m

i
, ⇡(`m) = �i

r
⌦`

2

h
a`m � a†`,�m

i
, (B.10)

where now the canonical commutation relations requireh
a`m, a

†
`0m0

i
= (�1)m�``0�mm0 . (B.11)

156



The ground state is the usual thing, a`m |0i = 0, which means the state is a

product state over all values of `,m, each a harmonic oscillator ground state

with unit mass but frequency ⌦`. The two-point function at equal times in

this state is then easily worked out:

h0|'(✓,�)'(✓0,�0)|0i =
X
`m

Y m⇤
` (✓,�)Y m

` (✓0,�0)

2
p

R�2`(`+ 1) +m2
. (B.12)

The wavefunctional of this state is a Gaussian product state as usual,

 0['] = h'|0i =
Y
`m

N`me
�⌦`'(`,m)'(`,�m)/2. (B.13)

Now we can do a free scalar field in flat spacetime in spherical coordi-

nates. That is, we write the Minkowski metric as

ds2 = �dt2 + dr2 + r2d⌦2. (B.14)

It is straightforward enough to just quantize the theory in these coordinates

directly; one can also just write down the answers by appealing to (3.1.3) in the

main text and setting N = 1, A = r and so the weight function is W = r2. The

Sturm-Liouville problem (3.83) one needs to solve is defined by the di↵erential

operator

D = @r(r
2@r)� L2 � r2m2. (B.15)

The solution to the Sturm-Liouville equation Dv = �W⌦2v are the spherical

Bessel functions, with ⌦2
p` = p2 +m2. As a boundary condition we can simply

impose that the solution is nonsingular at the origin, thus we have radial modes

vp`(r) = Np`j`(pr). (B.16)
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Note that, up to the normalization, these modes are real, and of course we

can take the normalization to be real itself. We can fix the normalization by

requiring orthonormality of the radial functions in the Sturm-Liouville inner

product, which here is

�(p�p0) = (vp`, vp0`) =

Z
dr r2|Np`|2j`(pr)j`(p0r) = |Np`|2

⇡

2p2
�(p�p0), (B.17)

i.e. we find |Np`|2 = 2p2/⇡.1 Thus we finally have the mode functions

u↵(x) = up`m(r, ✓,�) =

r
2p2

⇡
j`(pr)Y

m
` (✓,�). (B.18)

Still following the main text, our mode expansion is given by

'(r, ✓,�) =

Z
dp

X
`m

up`m(r, ✓,�)'(p, `,m),

⇡(r, ✓,�) = r2 sin ✓

Z
dp

X
`m

up`m(r, ✓,�)⇡(p, `,m).
(B.19)

with reality of the field operator now requiring

'(p, `,m) = (�1)m'†(p, `,�m), ⇡(p, `,m) = (�1)m⇡†(p, `,�m). (B.20)

Again it is a good exercise to check that the canonical commutation relations

are satisfied by this expansion. This is left as an exercise for the reader.

Plugging the mode expansion back into the Hamiltonian, one gets

H =
1

2

Z
dp

X
`m

⇡†(p, `,m)⇡(p, `,m) + ⌦2
p`'

†(p, `,m)'(p, `,m), (B.21)

1Here one can just look up the integral, but it’s worth noting that one can also follow
the Sturm-Liouville trick that we used in de Sitter space to perform an integration by parts
and get an expression analogous to (3.194).
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where the mode frequencies are now rather di↵erent than the case of the sphere;

as mentioned earlier one has

⌦2
p` = p2 +m2. (B.22)

We can find the ground state by defining creation and annihilation operators

as before, there are no new subtleties. One finds that the two-point function

at equal times in this state is

h0|'(r, ✓,�)'(r0, ✓0,�0)|0i =
Z

dp
X
`m

p2

⇡
p

p2 +m2
j`(pr)j`(pr

0)Y m⇤
` (✓,�)Y m

` (✓0,�0).

(B.23)

The wavefunctional of this state is a Gaussian product state as usual,

 0['] = h'|0i =
Y
p`m

Np`me
�⌦p`'(p,`,m)'(p,`,�m)/2. (B.24)

An important observable, especially in cosmology, is the angular power

spectrum. The angular power spectrum of a field in some state is defined by

considering the two-point function at some fixed radius and time,

h'(r, ✓,�)'(r, ✓0,�0)i = f(⌦,⌦0) (B.25)

and performing a harmonic decomposition

f(⌦,⌦0) =
X
``0mm0

C``0mm0Y m⇤
` (⌦)Y m0

`0 (⌦0). (B.26)

In a rotationally invariant state, the C``0mm0 coe�cients will take the form

C``mm0 = C`�``0�mm0 . (B.27)
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The C` coe�cients (sometimes normalized by `(`+ 1)) are what are typically

reported in a cosmological observation; they define the angular power spectrum

of some correlation function. For example, in flat spacetime in the vacuum we

have that

C`(r) =

Z
dp p2

⇡
p

p2 +m2
j`(pr)j`(pr

0). (B.28)

Tragically, this integral is logarithmically divergent in the ultraviolet, no mat-

ter what radius we are considering. Remarkably, the same is not true in an

inflationary spacetime, in which the angular power (3.183) is a perfectly finite

quantity requiring no regularization.
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Appendix C

Time-evolution of time-dependent oscillators

This section reviews the exact solution of the Schrödinger equation for

a mode of a free scalar field, allowing for a generally time-dependent mass

M(t) and frequency !
p

(t). Here I use the notation p to label the modes since

this formalism is used in the main text for co-moving cosmological fields, but

everything could just as easily have been a general index ↵. The basic tech-

nique here was originally found a single harmonic oscillator of time-dependent

mass and frequency and was given by Birkho↵.(88) I learned of this technique

while working on initial conditions for inflation with W. Fischler, S. Paban

and N. Sivanandam.(89)

As before we consider a product state

| i =
O
p

| 
p

i
p

. (C.1)

Each p-state is that of a harmonic oscillator with time-dependent mass and

frequency. The general time evolution operator U
p

of such a state is known

exactly, as we describe shortly. Thus on a product state of the form (C.1) we

can write

U(t, t0) =
O
p

U
p

(t, t0) (C.2)
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and then extend this to a general state by linearity.

The single-mode evolution operator U
p

can be constructed as follows.

One first notes that we can write the Hamiltonian for the mode as a sum of

terms

H
p

(t) = a+(t)J+ + a0(t)J0 + a�(t)J� (C.3)

where

a+ =
1

2
M⌦2

p

, a0 = 0, a� =
1

2M
(C.4)

J+ = '†(p)'(p), J0 =
i

2

⇥
⇡(p)'†(p) + '(p)⇡†(p)

⇤
, J� = ⇡†(p)⇡(p). (C.5)

The key observation is that these operators form an su(2) algebra,1

[J+, J�] = 2J0, [J0, J±] = ±J±. (C.6)

This is useful because it implies that we may write the time-evolution operator

as a simple product operator

U
p

(t, t0) = exp (c+(t)J+) exp (c0(t)J0) exp (c�(t)J�) (C.7)

i.e. as an element in some representation of SU(2), since the formal solution

U = T exp�i
R
H(t)dt is itself an element in the same representation. The

(enormous) simplification here is that one can work out a set of di↵erential

equations for the c(t) coe�cients which we can solve, instead of computing a

1Here we are being a little sloppy: in doing the commutators mode-by-mode like this one
gets a bunch of Dirac delta functions evaluating to infinity; to do things properly it should
be done under the

R
d3p.
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time-ordered exponential integral. Indeed, inserting this expression into the

Schrödinger equation

i@tUp

(t, t0) = H
p

(t)U
p

(t, t0), (C.8)

di↵erentiating (C.7) in time, commuting the various factors to the left so that

this derivative is proportional to U
p

, and then inserting the Hamiltonian (C.3),

one can work out that the c(t) satisfy the system

ċ+ = �i(a+ � a�c
2
+), ċ0 = 2ia�c+, ċ� = �ia�e

c0 (C.9)

with the initial condition c+(t0) = c0(t0) = c�(t0) = 0. It is possible to give

the solution to these equations in terms of an auxillary function S = S(t)

satisfying
d2S

dt2
+

d lnM

dt

dS

dt
+ ⌦2

p

S = 0. (C.10)

In terms of a solution S(t) to this equation, one can find without too much

trouble that we have

c+(t) = iM(t)
d lnS(t)

dt
, c0(t) = �2 ln

S(t)

S(t0)
, c�(t) = �iS2(t0)

Z t

t0

dt0

M(t0)S2(t0)
.

(C.11)

The auxillary equation cannot be solved in general, but these equations com-

pletely and exactly determine the time-evolution operator. Note that S will

have two free parameters since its defining equation is 2nd order; only the

ratio of these will enter the c’s, and this ratio is fixed by the initial condition

c+(t0) = 0. A simple example of this formalism is a free scalar in flat space:

one finds S(t) = ei!(t�t0) + e�i!(t�t0), up to an irrelevant overall constant.
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We will be particularly interested in states of the field where each mode

has a Gaussian wavefunction,

 [', t] =
Y
p

 
p

('(p), t) (C.12)

 
p

('(p), t) = N
p

(t) exp {�f
p

(t)'(p)'(�p)/2} . (C.13)

Using the relations

e↵@xf(x) = f(x+ ↵)

e↵x@xf(x) = f(e↵x)

e↵@
2
xf(x) =

1p
4⇡↵

Z 1

�1
dyf(y)e�(x�y)2/4↵

(C.14)

it is easy to demonstrate that U
p

evolves such a Gaussian wavefunction into

another Gaussian wavefunction, whose width is determined by

Ref
p

(t) = ec0(t)
Ref

p

(t0)

1 + |c�(t)|2|fp(t0)|2 � 2ic�(t)Imf
p

(t0)

Imf
p

(t) = ic+(t) + ec0(t)
Imf

p

(t0)� ic�(t)|fp(t)|2

1 + |c�(t)|2|fp(t0)|2 � 2ic�(t)Imf
p

(t0)
.

(C.15)

More generally, one can work out an explicit propagator constructed out of U
p

and use it to show that if  
p

(t) is an instantenous eigenstate of the Hamilto-

nian, i.e. is instantaneously in some harmonic oscillator energy eigenstate n,

then it will evolve forward in time while preserving the same form of the nth

eigenstate.
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Appendix D

Bulk information near cosmological horizons

In this appendix, constructed from my paper with W. Fischler (64), we

study bulk classical information near time-dependent horizons. In searching

for a quantum formulation of physics in cosmological spacetimes, a natural

question to ask is: what happens to localized information as it nears the edge

of observational range?

The answer is known when spacetime is static: the observer sees lo-

calized information like a charge or string spread exponentially fast or “fast-

scramble” across the horizon.(90; 91; 92) Here we generalize this picture to

arbitrary cosmological horizons. We give examples of the exponential fast-

scrambling and power-law scrambling and “de-scrambling” of the electric fields

of point charges propagating freely near these horizons. In particular we show

that when the universe is decelerating, information hidden behind the ap-

parent horizon is de-scrambled as it re-enters the view of the observer. The

calculations are entirely classical.

The scrambling process in quantum mechanics is intimately tied up

with unitarity. One of the original motivations for its study was to understand

how a quantum mechanical system obeying unitarity can “thermalize” a local
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perturbation.(93) Quantum mechanically, we say that a small subsystem of a

system in some initial state is scrambled as the subsystem becomes entangled

with the rest of the system. In a local quantum field theory, this process occurs

at a power-law rate in time. The simplest example to understand is di↵usion,

which in d spatial dimensions gives a scrambling rate ⇠ td/2.

In the context of holography, if we believe that the classical bulk grav-

itational theory should have some quantum mechanical dual description, then

we should have a dictionary between these pictures. Locally interacting degrees

of freedom are only known to be capable of spreading information at power-law

rates, so exponential fast scrambling in the classical picture strongly suggests

that the scrambling of information on the horizon is controlled by non-local

processes in the dual.(92) In contrast to the static case, the power-law scaling

we find in the time-dependent case suggests that the dynamics of such horizons

can be described locally in a holographic theory.

Besides the intrinsic interest of the answer, this material is included as

an example of the frame formalism developed in chapter 2 to a problem which

is both time-dependent and connected to holography. We will make heavy use

the material from section 2.5.

Scrambling précis

We need to say precisely what observable we will calculate to describe

the scrambling. The simplest implementation of holography here is to note

that, given the history of the universe and the Maxwell equations, the worldline
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observer
Q

Figure D.1: Point charge Q projecting its image onto the horizon of a co-
moving observer O. This picture represents the situation on a spatial slice in
the observer’s frame at some fixed observer time ⌧ .

of a point charge and the electric field it induces on the horizon are equivalent

pieces of data.1 In other words, we can trade the boundary condition for the

solution at the classical level. One can make it even more clear by defining

the induced surface charge on the horizon: then scrambling is the statement

that the induced charge density spreads out in time as the charge nears the

horizon.

What we will do is calculate the angular distribution of charge induced

on the apparent horizon of a co-moving observer O watching a point charge Q

1We are neglecting any interactions, in particular the backreaction of the charge and its
field.
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falling near the horizon. One can interpret the calculations in a simple way,

following (91; 92). While the charge Q is inside the horizon, it is just bulk data

satisfying the Maxwell equations. While the charge is behind the horizon, we

instead think of the induced charge ⌃ as the holographic representation of the

information.

We define the induced charge using Gauss’ law. Suppose we know the

electromagnetic field strength Fâb̂ everywhere in the observer’s frame. Now

consider a small area dA = R2(⌧, �AH) sin ✓d✓ ^ d� on the horizon at time ⌧ .

The Gauss law d ? F = ?J says that the induced charge Qind on this area of

the horizon is given by

⌃(⌧, ✓,�)dA = (?F )✓�(⌧, �AH , ✓,�)d✓ ^ d�. (D.1)

In terms of the radial electric field we have

(?F )✓� =
p
�g✏⌧⇢✓�F

⌧⇢ =
p
�g⌧⌧R

2 sin ✓F ⌧⇢ (D.2)

so we identify the surface charge density on the appropriate horizon

⌃ =
F⌧⇢p
�g⌧⌧

�����
horizon

= � Q

4⇡

�

a2(⌧)

r(⌧, �)� rQ cos ✓

�r3(⌧, �)

�����
horizon

. (D.3)

In evaluating this, one can use either the redshift parameter � = �horizon(⌧) or

the radial frame distance ⇢ = ⇢horizon(⌧) of the horizon. Note that in deriving

this formula, we are only considering the electric flux on one side of the horizon,

i.e. the side facing the observer.

If the metric is static then the horizon is both an event horizon and

apparent horizon. It is a null hypersurface and one finds that the induced
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charge is just a constant ⌃ ⌘ Q/4⇡H�2 across the sphere, at any time. In

accordance with the membrane paradigm, in this case we can regulate the

calculations by looking at the stretched horizon, a timelike hypersurface placed

a small frame distance ⇢SH = ⇢AH,EH � ✏ from the causal horizon.(90; 44)

To study the scrambling of a geodesic point charge we need its field

strength. The easiest way to get it is to write down the answer in co-moving

coordinates and then transform it to the frame.

Consider a point electric charge Q in an FRW universe. Suppose the

charge is co-moving with an inertial observer O at the origin, so it lives on

the timelike geodesic (t, r, ✓,�) ⌘ (t, rQ, ✓Q,�Q). If the charge is at the spatial

origin, it produces the Coulomb field F = �Q/4⇡ar2dt ^ dr.2 If the charge is

displaced from O, we can translate this to obtain

F = Ftrdt ^ dr + Ft✓dt ^ d✓, (D.4)

with, taking the charge along the z-axis (✓Q = 0) for simplicity,

Ftr = � Q

4⇡a(t)

r � rQ cos ✓

�r3
, Ft✓ = � Q

4⇡a(t)

rrQ sin ✓

�r3
. (D.5)

Here �r is the co-moving distance from the charge to the spatial origin

�r2 = r2 � 2rrQ cos ✓ + r2Q. (D.6)

In this expression for F we see a simple way in which FRW coordinates

are not so intuitive for describing the observations of O. An inertial observer

2The factor of a is fixed by the Gauss law on some co-moving sphere Q =
R
S2 ?F .
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in an expanding universe would see Q receding from view, and thus a current,

and so she should see a magnetic field. But this is nowhere to be found in

co-moving coordinates, which are defined by the statement that she and the

charge have fixed coordinate distance. When we go to our frame coordinates

we will see the magnetic field show up again.

Transforming this expression to the frame is straightforward. The com-

ponents transform as usual Fâb̂(x
â) = ⇤µ

â⇤
⌫
b̂
Fµ⌫(yµ(xâ)). One finds after rou-

tine computation using (2.65) that we have a radial electric field

F⌧⇢ = F⌧⇢(⌧, �) = � Q

4⇡

�H(⌧)F (⌧, �)

a(⌧)

r(⌧, �)� rQ cos ✓

�r3(⌧, �)
(D.7)

where the co-moving radial coordinate is expressed in frame coordinates via

(2.62). Here we defined the Hubble rate at frame time ⌧ as H(⌧) = ȧ(⌧)/a(⌧).

We also find an electric field tangential to the spatial spheres

F⌧✓ = � Q

4⇡
�H(⌧)F (⌧, �)

r(⌧, �)rQ sin ✓

�r3(⌧, �)
(D.8)

and a magnetic field along the azimuth �,

F⇢✓ =
Q

4⇡

p
�(� � 1)

a(⌧)

r(⌧, �)rQ sin ✓

�r3(⌧, �)
. (D.9)

The parameter rQ represents the initial condition for the charge in co-moving

coordinates. We can re-interpret it in the frame as the redshift �Q which O

assigns to r = rQ at some reference time ⌧ = ⌧0. That is, �Q is defined by

(2.62) as

rQ = r(⌧0, �Q). (D.10)
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From these expressions, one can see the general behavior of the angular

distribution of the induced charge (D.3). Using (2.62), (D.6) and (D.10), we see

that the angular dependence is varying in time according to b0(a(⌧)) ⇠ e�H0⌧

during exponential inflation or b0(a(⌧)) ⇠ ⌧ 1�↵ for a power law a(⌧) ⇠ ⌧↵.

Clearly the behavior for a decelerating cosmology ↵ < 1 is opposite that of

an accelerating cosmology: accelerating epochs scramble information across

the horizon, and decelerating epochs de-scramble it back together. We now

turn to some physically relevant examples, in particular the three cosmologies

studied in 2.5. We study them in the same order as we did there.

Accelerating cosmologies are scramblers

First we consider a charge falling onto the event horizon of an observer

in a cosmological-constant dominated universe, with scale factor a = a0eH0t.

This charge is propagating on a straight vertical line r ⌘ rQ on the co-moving

coordinate grid in figure 2.7. We can read o↵ the angular charge distribution

on the horizon using (D.3). Inserting (D.6), (2.72), and replacing rQ with

(D.10) we get the charge density:

⌃ = � Q

4⇡H�2
0

�
⇥
s� eH0⌧sQ cos ✓

⇤⇥
s2 � 2eH0⌧ssQ cos ✓ + e2H0⌧s2Q

⇤3/2
�����
horizon

, (D.11)

where we defined s =
p
� � 1, sQ =

p
�Q � 1 and set a0 = 1, t0 = ⌧0 = 0 for

brevity. Placing the charge on the observer’s worldline �Q ! 1 gives the correct

static Coulomb field. We also have that for any �Q, the charge distribution on

the true event horizon � ! 1 is just ⌃ ⌘ �Q/4⇡H�2
0 as explained above.
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Figure D.2: Angular distribution of induced charge on the stretched horizon
of an exponentially inflating universe. In the left figure, blue means negative
and yellow means positive induced charge.

The stretched horizon is a timelike surface very near the horizon. In

this formula this means we set � = �SH < 1 to some large but finite value.

We can see what happens in fig. 2.7. While the charge is in view it induces

a negative charge Qind = �Q across the horizon. As it passes through the

stretched horizon it induces a large spike of positive charge which then spreads

exponentially fast across the top half of the horizon, leaving an overall neutral,

symmetric dipole after about a scrambling time of order H�1
0 . For example a

charge today would take on the order of 1010 years to spread across an order

one fraction of the horizon while during primordial inflation it would have

taken no longer than about 10�25 seconds (for Hinf ⇠ 1 GeV).
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To connect explicitly to known results in the literature, we note that in

the Rindler near-horizon limit (see section 2.3), one simply sees the induced

charge spread out exponentially for all time, because the horizon is a plane.

The picture here is refined by the constraint of the Gauss law: after the charge

passes outside the horizon it must induce a net charge of zero. This is con-

sistent with our identification of the charge density with the bulk data of the

point charge Q: no matter how we count things the total charge of the system

is always Qtotal = Qbulk +Qhorizon = 0.

Decelerating cosmologies are de-scramblers
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Figure D.3: Angular distribution of induced charge on the apparent horizon
of a kinetic-energy dominated big bang cosmology.

Now we study the decelerating big bang cosmologies with power-law
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scale factors a ⇠ t1/3. Consider once again our free-falling charge. We can

read o↵ the charge density with (D.3). Replacing rQ with (D.10) we get:

⌃ = � Q

4⇡

�

(3⌧)2
s� (⌧/⌧0)�2/3sQ cos ✓⇥

s2 � 2(⌧/⌧0)�2/3ssQ cos ✓ + (⌧/⌧0)�4/3s2Q
⇤3/2

�����
horizon

, (D.12)

where this time we have defined s =
p
(� � 1)/�. We can easily check some

simple limits again. Placing the charge on the observer’s worldline �Q ! 1,

we find a Coulomb field redshifting in time,

F⌧⇢

����
�Q!1

= � Q

4⇡

1

(3⌧)2
. (D.13)

Meanwhile the spatial spheres have area growing at precisely the right rate to

cancel this e↵ect, so that we still satisfy the Gauss law. Since this spacetime

has no event horizon, the boundary conditions on the field are simply that

F⌧⇢ ! 1 at the big bang � ! 1, which is certainly satisfied.3

From these formulas and fig. 2.8 it is clear what is going on. Consider

a configuration in which the image on the horizon is already scrambled into

a neutral dipole. By the method of images this is obviously equivalent to a

point charge Q starting behind the horizon. The observer O will see his horizon

grow and the charge fall away, but the horizon grows faster. Thus she sees the

charge’s image on the horizon coalesce or “de-scramble” from a dipole back

into a point charge which then re-appears inside the horizon. This occurs at

a power-law rate as one can see easily from (D.12).

3One can see that this is the right boundary condition by again appealing to the Gauss
law.
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Scrambling and de-scrambling from acceleration to deceleration

Finally, we study the third model from section 2.5: a flat FRW universe

which is undergoing exponential inflation at early times and then exits to an

era of cosmological deceleration. This example is particularly nice: during the

inflationary period, we can “drop” the charge and watch it scramble across the

horizon. As the universe begins to decelerate, the image of the charge then

comes back together, de-scrambling the information.

As usual we can read o↵ the charge density from (D.3). To keep the

expressions tractable, put sE =
p
� � 1 and sL =

p
(� � 1)/� as before, and

use (D.10) to write rQ = sQ/a0H0 with sQ =
p
�Q � 1. Then at early times

we have

⌃E = � Q�

4⇡H�2
0

sE � eH0(⌧�⌧0)sQ cos ✓⇥
s2E � 2eH0(⌧�⌧0)sEsQ cos ✓ + e2H0(⌧�⌧0)s2Q

⇤3/2 , (D.14)

and at late times

⌃L = � Q�

4⇡H�2
0

⇣
⌧
⌧0

⌘2

sL � (⌧/⌧0)�2/3sQ cos ✓⇥
s2L � 2(⌧/⌧0)�1/3sLsQ cos ✓ + (⌧/⌧0)�2/3s2Q

⇤3/2 , (D.15)

in agreement with (D.11) and (D.12), respectively, where again we set a0 = 1.

During the middle period we have the somewhat more complex behavior

⌃M = � Q�

4⇡H�2
0

⇣
⌧
⌧0

⌘2

sM � (⌧/⌧0)�2/3sQ cos ✓⇥
s2M � 2(⌧/⌧0)�1/3sMsQ cos ✓ + (⌧/⌧0)�2/3s2Q

⇤3/2 ,
(D.16)

where

sM = sM(⌧, �) =

r
�⇤ � 1

�⇤
+

✓
⌧

⌧0

◆�1 ⇥p
� � 1�

p
�⇤ � 1

⇤
. (D.17)
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Here, the charge densities are evaluated on the horizon. In the middle and late

regions ⌧ > ⌧0 the apparent horizon is spacelike and we can set � = �AH(⌧)

directly. At early times ⌧  ⌧0 the horizon is null, so we need to stretch it

by placing it at some large finite redshift �SH < 1. Once again ⌃ = ⌃(⌧, �)

is continuous and so is the redshift of the apparent horizon, so we have a

continuously varying image on the horizon through the entire cosmic history.

Following the earlier sections, the interpretation is clear. A charge

Q even slightly displaced from the observer O which begins inside the hori-

zon during the early period of inflation will, if inflation lasts long enough,

fast-scramble onto the apparent horizon. However, in the later decelerating

period, the image will then de-scramble at a power law rate as the point charge

reappears inside the horizon.
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Figure D.4: Angular distribution of induced charge on the stretched horizon
of our junction cosmology, with rQ tuned so that the charge scrambles within
about an e-folding of the end of inflation. Here we are plotting arctan⌃ for
graphical clarity: the stretched horizon moves inward very rapidly at t = t0
and this causes a large spike in the induced charge.
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